Suppr超能文献

使用人工神经网络和不同的进化算法预测二氧化硅-氧化铝-多壁碳纳米管/水纳米流体的粘度和热导率。

Using of artificial neural networks and different evolutionary algorithms to predict the viscosity and thermal conductivity of silica-alumina-MWCN/water nanofluid.

作者信息

Baghoolizadeh Mohammadreza, Jasim Dheyaa J, Sajadi S Mohammad, Renani Reza Rostamzadeh-, Renani Mohammad Rostamzadeh-, Hekmatifar Maboud

机构信息

Department of Mechanical Engineering, Shahrekord University, Shahrekord 88186-34141, Iran.

Department of Petroleum Engineering, Al-Amarah University College, Maysan, Iraq.

出版信息

Heliyon. 2024 Feb 10;10(4):e26279. doi: 10.1016/j.heliyon.2024.e26279. eCollection 2024 Feb 29.

Abstract

This study predicts the parameters such as viscosity and thermal conductivity in silica-alumina-MWCN/water nanofluid using the artificial intelligence method and using design variables such as solid volume fraction and temperature. In this study, 6 optimization algorithms were used to predict and numerically model the μ and TC of silica-alumina-MWCNT/water-NF. In this study, six measurement criteria were used to evaluate the estimates obtained from the coupling process of GMDH ANN with each of these 6 optimization algorithms. The results reveal that the influence of the φ is notably higher on both μ and TC with values of 0.83 for μ and 0.92 for TC, while Temp has a relatively weaker impact with -0.5 for μ and 0.38 for TC. Among various algorithms, the coupling of the evolutionary algorithm NSGA II with ANN and GMDH performs best in predicting μ and TC for the NF, with a maximum margin of deviation of -0.108 and an R evaluation criterion of 0.99996 for μ and 1 for TC, indicating exceptional model accuracy. In the subsequent phase, a meta-heuristic Genetic Algorithm minimizes μ and TC values. Four points (A, B, C, and D) along the Pareto front are selected, with point A representing the optimal state characterized by low values of φ and Temp (0.0002 and 50.8772, respectively) and corresponding target function values of 0.9988 for μ and 0.6344 for TC. In contrast, point D represents the highest values of φ and Temp (0.49986 and 59.9775, respectively) and yields target function values of 2.382 for μ and 0.8517 for TC. This analysis aids in identifying the optimal operating conditions for maximizing NF performance.

摘要

本研究采用人工智能方法,并利用诸如固体体积分数和温度等设计变量,预测硅铝 - 多壁碳纳米管/水纳米流体中的粘度和热导率等参数。在本研究中,使用了6种优化算法来预测和数值模拟硅铝 - 多壁碳纳米管/水纳米流体的μ和TC。在本研究中,使用了6种测量标准来评估从GMDH人工神经网络与这6种优化算法中的每一种的耦合过程中获得的估计值。结果表明,φ对μ和TC的影响显著更高,μ的值为0.83,TC的值为0.92,而温度对μ的影响相对较弱,为 - 0.5,对TC的影响为0.38。在各种算法中,进化算法NSGA II与人工神经网络和GMDH的耦合在预测纳米流体的μ和TC方面表现最佳,μ的最大偏差幅度为 - 0.108,R评估标准为0.99996,TC的R评估标准为1,表明模型精度极高。在后续阶段,一种元启发式遗传算法使μ和TC值最小化。沿着帕累托前沿选择了四个点(A、B、C和D),点A代表最优状态,其特征是φ和温度值较低(分别为0.0002和50.8772),μ的目标函数值为0.9988,TC的目标函数值为0.6344。相比之下,点D代表φ和温度的最高值(分别为0.49986和59.9775),μ的目标函数值为2.382,TC的目标函数值为0.8517。该分析有助于确定使纳米流体性能最大化的最佳操作条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3df/10877415/d3fe4f8d8231/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验