Jori Roslan Nursyafiqah, Jamal Siti Hasnawati, Abdul Rashid Jahwarhar Izuan, Norrrahim Mohd Nor Faiz, Ong Keat Khim, Wan Yunus Wan Md Zin
Department of Defence Science, Faculty of Defence Science and Technology, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia.
Centre for Tropicalization, Defence Research Institute, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia.
Heliyon. 2024 Feb 7;10(4):e25993. doi: 10.1016/j.heliyon.2024.e25993. eCollection 2024 Feb 29.
Nitrocellulose (NC) has garnered significant interest among researchers due to its versatile applications, contingent upon the degree of nitration that modifies the cellulose structure. For instance, NC with a high nitrogen content, exceeding 12.5%, finds utility as a key ingredient in propellant formulations, while variants with lower nitrogen content prove suitable for a range of other applications, including the formulation of printing inks, varnishes, and coatings. This communication aims to present the outcomes of our efforts to optimize the nitration reaction of bacterial cellulose to produce high-nitrogen-content NC, employing the response surface methodology (RSM). Our investigation delves into the influence of the mole ratio of sulfuric and nitric acids, reaction temperature, and nitration duration on the nitrogen content of the resultant products. Utilizing a central composite design (CCD), we identified the optimal conditions for NC synthesis. Analysis of variance (ANOVA) underscored the substantial impact of these reaction conditions on the percentage of nitrogen content (%N) yield. By implementing the predicted optimal conditions-namely, a HSO:HNO mole ratio of 3:1, a reaction temperature of 35 °C, and a reaction period of 22 min-we successfully produced NC with a nitrogen content of 12.64%. Characterization of these products encompassed elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM).
硝化纤维素(NC)因其广泛的应用而在研究人员中引起了极大的兴趣,这取决于硝化程度对纤维素结构的改变。例如,氮含量超过12.5%的高氮含量NC可作为推进剂配方中的关键成分,而氮含量较低的变体则适用于一系列其他应用,包括印刷油墨、清漆和涂料的配方。本通讯旨在介绍我们采用响应面法(RSM)优化细菌纤维素硝化反应以生产高氮含量NC的研究成果。我们的研究深入探讨了硫酸与硝酸的摩尔比、反应温度和硝化持续时间对所得产物氮含量的影响。利用中心复合设计(CCD),我们确定了NC合成的最佳条件。方差分析(ANOVA)强调了这些反应条件对氮含量百分比(%N)产率的重大影响。通过实施预测的最佳条件,即HSO:HNO摩尔比为3:1、反应温度为35°C和反应时间为22分钟,我们成功制备了氮含量为12.64%的NC。这些产物的表征包括元素分析、傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)和场发射扫描电子显微镜(FESEM)。