Steinkopf Markus, Krumme Uwe, Schulz-Bull Detlef, Wodarg Dirk, Loick-Wilde Natalie
Department of Biological Oceanography Leibniz Institute for Baltic Sea Research Warnemuende Rostock Germany.
Thünen Institute of Baltic Sea Fisheries Rostock Germany.
Ecol Evol. 2024 Feb 20;14(2):e11048. doi: 10.1002/ece3.11048. eCollection 2024 Feb.
Eutrophication, increased temperatures and stratification can lead to massive, filamentous, N-fixing cyanobacterial (FNC) blooms in coastal ecosystems with largely unresolved consequences for the mass and energy supply in food webs. Mesozooplankton adapt to not top-down controlled FNC blooms by switching diets from phytoplankton to microzooplankton, resulting in a directly quantifiable increase in its trophic position (TP) from 2.0 to as high as 3.0. If this process in mesozooplankton, we call trophic lengthening, was transferred to higher trophic levels of a food web, a loss of energy could result in massive declines of fish biomass. We used compound-specific nitrogen stable isotope data of amino acids (CSIA) to estimate and compare the nitrogen (N) sources and TPs of cod and flounder from FNC bloom influence areas (central Baltic Sea) and areas without it (western Baltic Sea). We tested if FNC-triggered trophic lengthening in mesozooplankton is carried over to fish. The TP of cod from the western Baltic (4.1 ± 0.5), feeding mainly on decapods, was equal to reference values. Only cod from the central Baltic, mainly feeding on zooplanktivorous pelagics, had a significantly higher TP (4.6 ± 0.4), indicating a strong carry-over effect trophic lengthening from mesozooplankton. In contrast, the TP of molluscivorous flounder, associated with the benthic food web, was unaffected by trophic lengthening and quite similar reference values of 3.2 ± 0.2 in both areas. This suggests that FNC blooms lead to a large loss of energy in zooplanktivorous but not in molluscivorous mesopredators. If FNC blooms continue to trigger the detour of energy at the base of the pelagic food web due to a massive heterotrophic microbial system, the TP of cod will not return to lower TP values and the fish stock not recover. Monitoring the TP of key species can identify fundamental changes in ecosystems and provide information for resource management.
富营养化、气温升高和水体分层会导致沿海生态系统中出现大量丝状固氮蓝藻(FNC)水华,这对食物网中的物质和能量供应产生的影响在很大程度上尚未得到解决。中型浮游动物通过将食物从浮游植物转向微型浮游动物来适应不受自上而下控制的FNC水华,其营养级(TP)直接从2.0增加到高达3.0。如果中型浮游动物的这个过程(我们称之为营养级延长)转移到食物网的更高营养级,能量损失可能导致鱼类生物量大幅下降。我们使用氨基酸的化合物特异性氮稳定同位素数据(CSIA)来估计和比较来自FNC水华影响区域(波罗的海中部)和无FNC水华区域(波罗的海西部)的鳕鱼和比目鱼的氮(N)来源和营养级。我们测试了FNC引发的中型浮游动物营养级延长是否会传递到鱼类。波罗的海西部以十足目动物为主要食物的鳕鱼的营养级(4.1± 0.5)与参考值相当。只有波罗的海中部主要以浮游动物食性的浮游生物为食的鳕鱼营养级显著更高(4.6± 0.4),表明营养级延长从中型浮游动物有很强的传递效应。相比之下,与底栖食物网相关的食软体动物比目鱼的营养级不受营养级延长影响,在两个区域都与3.2± 0.2的参考值相当。这表明FNC水华导致浮游动物食性的中型捕食者能量大量损失,但食软体动物的中型捕食者没有。如果由于庞大的异养微生物系统,FNC水华继续在浮游食物网底部引发能量迂回,鳕鱼的营养级将不会恢复到较低值,鱼类种群也不会恢复。监测关键物种的营养级可以识别生态系统的根本变化,并为资源管理提供信息。