Suppr超能文献

机器学习将 T 细胞功能和空间定位与胰腺癌的新辅助免疫治疗和临床结果联系起来。

Machine Learning Links T-cell Function and Spatial Localization to Neoadjuvant Immunotherapy and Clinical Outcome in Pancreatic Cancer.

机构信息

Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon.

The Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.

出版信息

Cancer Immunol Res. 2024 May 2;12(5):544-558. doi: 10.1158/2326-6066.CIR-23-0873.

Abstract

Tumor molecular data sets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning (ML) to analyze a single-cell, spatial, and highly multiplexed proteomic data set from human pancreatic cancer and reveal underlying biological mechanisms that may contribute to clinical outcomes. We designed a multiplex immunohistochemistry antibody panel to compare T-cell functionality and spatial localization in resected tumors from treatment-naïve patients with localized pancreatic ductal adenocarcinoma (PDAC) with resected tumors from a second cohort of patients treated with neoadjuvant agonistic CD40 (anti-CD40) monoclonal antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 patients across both cohorts were assayed, and over 1,000 tumor microenvironment (TME) features were quantified. We then trained ML models to accurately predict anti-CD40 treatment status and disease-free survival (DFS) following anti-CD40 therapy based on TME features. Through downstream interpretation of the ML models' predictions, we found anti-CD40 therapy reduced canonical aspects of T-cell exhaustion within the TME, as compared with treatment-naïve TMEs. Using automated clustering approaches, we found improved DFS following anti-CD40 therapy correlated with an increased presence of CD44+CD4+ Th1 cells located specifically within cellular neighborhoods characterized by increased T-cell proliferation, antigen experience, and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of ML in molecular cancer immunology applications, highlight the impact of anti-CD40 therapy on T cells within the TME, and identify potential candidate biomarkers of DFS for anti-CD40-treated patients with PDAC.

摘要

肿瘤分子数据集变得越来越复杂,仅凭人类很难有效地对其进行分析。在这里,我们展示了使用机器学习 (ML) 分析来自人类胰腺癌的单细胞、空间和高度多重化蛋白质组学数据集的能力,并揭示了可能导致临床结果的潜在生物学机制。我们设计了一种多重免疫组织化学抗体面板,用于比较来自未经治疗的局部胰腺导管腺癌 (PDAC) 患者的切除肿瘤和来自接受新辅助激动性 CD40 (抗 CD40) 单克隆抗体治疗的第二组患者的切除肿瘤中的 T 细胞功能和空间定位。总共有来自两个队列的 29 名患者的 306 个组织区域收集的近 250 万个细胞进行了检测,并对超过 1000 个肿瘤微环境 (TME) 特征进行了量化。然后,我们使用 ML 模型来准确预测基于 TME 特征的抗 CD40 治疗状态和抗 CD40 治疗后的无病生存 (DFS)。通过对 ML 模型预测的下游解释,我们发现与治疗前 TME 相比,抗 CD40 治疗降低了 TME 中 T 细胞衰竭的典型特征。使用自动化聚类方法,我们发现抗 CD40 治疗后 DFS 提高与特定位于免疫聚集物中 T 细胞增殖、抗原经验和细胞毒性增加的细胞邻里中 CD44+CD4+Th1 细胞的存在增加相关。总体而言,我们的结果证明了 ML 在分子癌症免疫学应用中的实用性,强调了抗 CD40 治疗对 TME 中 T 细胞的影响,并确定了 PDAC 接受抗 CD40 治疗患者 DFS 的潜在候选生物标志物。

相似文献

3
Intratumoral Cell Neighborhoods Coordinate Outcomes in Pancreatic Ductal Adenocarcinoma.
Gastroenterology. 2024 Jun;166(6):1114-1129. doi: 10.1053/j.gastro.2024.01.013. Epub 2024 Jan 18.
5
Transcriptomic-Based Microenvironment Classification Reveals Precision Medicine Strategies for Pancreatic Ductal Adenocarcinoma.
Gastroenterology. 2024 May;166(5):859-871.e3. doi: 10.1053/j.gastro.2024.01.028. Epub 2024 Jan 25.
8
Unraveling pancreatic ductal adenocarcinoma immune prognostic signature through a naive B cell gene set.
Cancer Lett. 2024 Jul 10;594:216981. doi: 10.1016/j.canlet.2024.216981. Epub 2024 May 23.
9
Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer.
Clin Cancer Res. 2021 Aug 15;27(16):4574-4586. doi: 10.1158/1078-0432.CCR-21-1047. Epub 2021 Jun 10.
10
Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma.
Mol Ther. 2021 Feb 3;29(2):744-761. doi: 10.1016/j.ymthe.2020.10.027. Epub 2020 Oct 30.

引用本文的文献

1
Informatics at the Frontier of Cancer Research.
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.
2
Immune-Based Therapies in Pancreatic Cancer: a Systematic Review of Ongoing Clinical Trials (2020-2022).
J Gastrointest Cancer. 2025 Apr 22;56(1):103. doi: 10.1007/s12029-025-01194-z.
3
Facts and Hopes of CD40 Agonists in Cancer Immunotherapy.
Clin Cancer Res. 2025 Jun 3;31(11):2079-2087. doi: 10.1158/1078-0432.CCR-24-1660.
6
A single-cell perspective on immunotherapy for pancreatic cancer: from microenvironment analysis to therapeutic strategy innovation.
Front Immunol. 2024 Oct 30;15:1454833. doi: 10.3389/fimmu.2024.1454833. eCollection 2024.
8
Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma.
Cell Oncol (Dordr). 2024 Oct;47(5):1561-1578. doi: 10.1007/s13402-024-00970-6. Epub 2024 Jul 15.
9
Current and future immunotherapeutic approaches in pancreatic cancer treatment.
J Hematol Oncol. 2024 Jun 4;17(1):40. doi: 10.1186/s13045-024-01561-6.

本文引用的文献

1
CTLA-4 blockade induces a microglia-Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma.
Immunity. 2023 Sep 12;56(9):2086-2104.e8. doi: 10.1016/j.immuni.2023.07.015. Epub 2023 Aug 11.
2
Machine learning for predicting survival of colorectal cancer patients.
Sci Rep. 2023 Jun 1;13(1):8874. doi: 10.1038/s41598-023-35649-9.
3
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance.
Nat Med. 2023 Jun;29(6):1550-1562. doi: 10.1038/s41591-023-02371-y. Epub 2023 May 29.
4
5
Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer.
Nature. 2023 Jun;618(7963):144-150. doi: 10.1038/s41586-023-06063-y. Epub 2023 May 10.
6
Dynamics and specificities of T cells in cancer immunotherapy.
Nat Rev Cancer. 2023 May;23(5):295-316. doi: 10.1038/s41568-023-00560-y. Epub 2023 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验