文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算方法和生物标志物发现策略在空间蛋白质组学中的应用:免疫肿瘤学综述。

Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology.

机构信息

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.

The Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae421.


DOI:10.1093/bib/bbae421
PMID:39179248
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11343572/
Abstract

Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.

摘要

成像技术的进步彻底改变了我们深入分析病理组织结构的能力,生成了具有空前空间分辨率的大量成像数据。这种数据采集方法,即空间蛋白质组学,为各种人类疾病提供了宝贵的见解。同时,计算算法也在不断发展,以应对这一进展中空间蛋白质组学固有维度的增加。已经提出了许多基于成像的计算框架,如计算病理学,用于研究和临床应用。然而,这些领域的发展需要不同的领域专业知识,这为它们的整合和进一步应用设置了障碍。这篇综述旨在通过提出一个全面的指南来弥合这一鸿沟。我们整合了现有的计算方法,并概述了从图像处理到数据驱动、统计信息驱动的生物标志物发现的路线图。此外,我们还探讨了该领域与其他定量领域接口的未来展望,这为免疫肿瘤学中的精准医疗带来了巨大的希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/28c9199b186d/bbae421f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/420269d5c9a7/bbae421f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/61b7628df0ac/bbae421f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/60a6bf6ca63b/bbae421f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/8b844f89ead2/bbae421f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/28c9199b186d/bbae421f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/420269d5c9a7/bbae421f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/61b7628df0ac/bbae421f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/60a6bf6ca63b/bbae421f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/8b844f89ead2/bbae421f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/11343572/28c9199b186d/bbae421f5.jpg

相似文献

[1]
Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology.

Brief Bioinform. 2024-7-25

[2]
A perspective on integrating digital pathology, proteomics, clinical data and AI analytics in cancer research.

J Proteomics. 2025-7-16

[3]
Short-Term Memory Impairment

2025-1

[4]
Advancements in AI for Computational Biology and Bioinformatics: A Comprehensive Review.

Methods Mol Biol. 2025

[5]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[6]
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

J Bone Miner Res. 2024-12-31

[7]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[8]
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.

J Psychiatr Ment Health Nurs. 2024-8

[9]
Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives.

Ann Oncol. 2025-4-28

[10]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

引用本文的文献

[1]
Multimodal integration strategies for clinical application in oncology.

Front Pharmacol. 2025-8-20

[2]
Cancer therapy resistance from a spatial-omics perspective.

Clin Transl Med. 2025-7

[3]
Topologically-based parameter inference for agent-based model selection from spatiotemporal cellular data.

bioRxiv. 2025-6-15

[4]
The evolution of analytical techniques for multiplex analysis of protein biomarkers.

Expert Rev Proteomics. 2025-7

[5]
The dual regulatory effects of intestinal microorganisms and their metabolites in gouty arthritis pathogenesis: a balance between promotion and inhibition.

Front Immunol. 2025-6-18

[6]
Hot Spots in Urogenital Basic Cancer Research and Clinics.

Cancers (Basel). 2025-3-31

[7]
Deciding where Trop-2 directed antibody drug conjugates work in non-small cell lung cancer: the not so straightforward road.

Transl Cancer Res. 2025-2-28

本文引用的文献

[1]
Integration of Clinical Trial Spatial Multiomics Analysis and Virtual Clinical Trials Enables Immunotherapy Response Prediction and Biomarker Discovery.

Cancer Res. 2024-8-15

[2]
Multi-Class Cell Detection Using Spatial Context Representation.

Proc IEEE Int Conf Comput Vis. 2021-10

[3]
The multimodality cell segmentation challenge: toward universal solutions.

Nat Methods. 2024-6

[4]
Towards a general-purpose foundation model for computational pathology.

Nat Med. 2024-3

[5]
A visual-language foundation model for computational pathology.

Nat Med. 2024-3

[6]
Machine Learning Links T-cell Function and Spatial Localization to Neoadjuvant Immunotherapy and Clinical Outcome in Pancreatic Cancer.

Cancer Immunol Res. 2024-5-2

[7]
Quantifying collective motion patterns in mesenchymal cell populations using topological data analysis and agent-based modeling.

Math Biosci. 2024-4

[8]
Segment anything in medical images.

Nat Commun. 2024-1-22

[9]
Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-tissue Sarcomas: Clinical Outcomes and Biological Correlates.

Clin Cancer Res. 2024-4-1

[10]
Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L)1 Blockade in Non-Small-Cell Lung Cancer.

J Clin Oncol. 2024-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索