Qiao Minglang, Xu Mai, Jiang Lai, Lei Peng, Wen Shijie, Chen Yunjin, Sigal Leonid
IEEE Trans Pattern Anal Mach Intell. 2024 Sep;46(9):5873-5889. doi: 10.1109/TPAMI.2024.3368158. Epub 2024 Aug 6.
Salient object ranking (SOR) aims to segment salient objects in an image and simultaneously predict their saliency rankings, according to the shifted human attention over different objects. The existing SOR approaches mainly focus on object-based attention, e.g., the semantic and appearance of object. However, we find that the scene context plays a vital role in SOR, in which the saliency ranking of the same object varies a lot at different scenes. In this paper, we thus make the first attempt towards explicitly learning scene context for SOR. Specifically, we establish a large-scale SOR dataset of 24,373 images with rich context annotations, i.e., scene graphs, segmentation, and saliency rankings. Inspired by the data analysis on our dataset, we propose a novel graph hypernetwork, named HyperSOR, for context-aware SOR. In HyperSOR, an initial graph module is developed to segment objects and construct an initial graph by considering both geometry and semantic information. Then, a scene graph generation module with multi-path graph attention mechanism is designed to learn semantic relationships among objects based on the initial graph. Finally, a saliency ranking prediction module dynamically adopts the learned scene context through a novel graph hypernetwork, for inferring the saliency rankings. Experimental results show that our HyperSOR can significantly improve the performance of SOR.
显著目标排序(SOR)旨在对图像中的显著目标进行分割,并根据人类注意力在不同目标上的转移同时预测它们的显著度排名。现有的SOR方法主要关注基于目标的注意力,例如目标的语义和外观。然而,我们发现场景上下文在SOR中起着至关重要的作用,其中同一目标在不同场景下的显著度排名差异很大。因此,在本文中,我们首次尝试为SOR显式学习场景上下文。具体来说,我们建立了一个包含24373张图像的大规模SOR数据集,这些图像带有丰富的上下文注释,即场景图、分割和显著度排名。受对我们数据集的数据分析启发,我们提出了一种新颖的图超网络,名为HyperSOR,用于上下文感知的SOR。在HyperSOR中,开发了一个初始图模块来分割目标并通过考虑几何和语义信息构建一个初始图。然后,设计了一个具有多路径图注意力机制的场景图生成模块,以基于初始图学习目标之间的语义关系。最后,一个显著度排名预测模块通过一个新颖的图超网络动态采用学习到的场景上下文,用于推断显著度排名。实验结果表明,我们的HyperSOR可以显著提高SOR的性能。