Yusuf Muhammad Ovais, Hanzla Muhammad, Al Mudawi Naif, Sadiq Touseef, Alabdullah Bayan, Rahman Hameedur, Algarni Asaad
Faculty of Computing ad AI, Air University, Islamabad, Pakistan.
Department of Computer Science, College of Computer Science and Information System, Najran University, Najran, Saudi Arabia.
Front Neurorobot. 2024 Aug 30;18:1448538. doi: 10.3389/fnbot.2024.1448538. eCollection 2024.
Advanced traffic monitoring systems face significant challenges in vehicle detection and classification. Conventional methods often require substantial computational resources and struggle to adapt to diverse data collection methods.
This research introduces an innovative technique for classifying and recognizing vehicles in aerial image sequences. The proposed model encompasses several phases, starting with image enhancement through noise reduction and Contrast Limited Adaptive Histogram Equalization (CLAHE). Following this, contour-based segmentation and Fuzzy C-means segmentation (FCM) are applied to identify foreground objects. Vehicle detection and identification are performed using EfficientDet. For feature extraction, Accelerated KAZE (AKAZE), Oriented FAST and Rotated BRIEF (ORB), and Scale Invariant Feature Transform (SIFT) are utilized. Object classification is achieved through a Convolutional Neural Network (CNN) and ResNet Residual Network.
The proposed method demonstrates improved performance over previous approaches. Experiments on datasets including Vehicle Aerial Imagery from a Drone (VAID) and Unmanned Aerial Vehicle Intruder Dataset (UAVID) reveal that the model achieves an accuracy of 96.6% on UAVID and 97% on VAID.
The results indicate that the proposed model significantly enhances vehicle detection and classification in aerial images, surpassing existing methods and offering notable improvements for traffic monitoring systems.
先进的交通监测系统在车辆检测和分类方面面临重大挑战。传统方法通常需要大量计算资源,并且难以适应多样化的数据收集方法。
本研究引入了一种用于对航空图像序列中的车辆进行分类和识别的创新技术。所提出的模型包括几个阶段,首先通过降噪和对比度受限自适应直方图均衡化(CLAHE)进行图像增强。在此之后,应用基于轮廓的分割和模糊C均值分割(FCM)来识别前景物体。使用EfficientDet进行车辆检测和识别。对于特征提取,利用加速KAZE(AKAZE)、定向FAST和旋转BRIEF(ORB)以及尺度不变特征变换(SIFT)。通过卷积神经网络(CNN)和残差网络(ResNet)实现目标分类。
所提出的方法比以前的方法表现出更好的性能。在包括无人机车辆航空图像(VAID)和无人机入侵者数据集(UAVID)在内的数据集上进行的实验表明,该模型在UAVID上的准确率达到96.6%,在VAID上达到97%。
结果表明,所提出的模型显著增强了航空图像中的车辆检测和分类,超越了现有方法,并为交通监测系统带来了显著改进。