Suppr超能文献

百亿亿次计算时代的全原子生物分子模拟

All-Atom Biomolecular Simulation in the Exascale Era.

作者信息

Beck Thomas L, Carloni Paolo, Asthagiri Dilipkumar N

机构信息

National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-54245 Jülich, Germany.

出版信息

J Chem Theory Comput. 2024 Mar 12;20(5):1777-1782. doi: 10.1021/acs.jctc.3c01276. Epub 2024 Feb 21.

Abstract

Exascale supercomputers have opened the door to dynamic simulations, facilitated by AI/ML techniques, that model biomolecular motions over unprecedented length and time scales. This new capability holds the potential to revolutionize our understanding of fundamental biological processes. Here we report on some of the major advances that were discussed at a recent CECAM workshop in Pisa, Italy, on the topic with a primary focus on atomic-level simulations. First, we highlight examples of current large-scale biomolecular simulations and the future possibilities enabled by crossing the exascale threshold. Next, we discuss challenges to be overcome in optimizing the usage of these powerful resources. Finally, we close by listing several grand challenge problems that could be investigated with this new computer architecture.

摘要

百亿亿次超级计算机借助人工智能/机器学习技术,开启了动态模拟的大门,能够以前所未有的长度和时间尺度对生物分子运动进行建模。这一新能力有可能彻底改变我们对基本生物过程的理解。在此,我们报告在意大利比萨举行的最近一次CECAM研讨会上讨论的一些主要进展,该研讨会主题主要聚焦于原子级模拟。首先,我们重点介绍当前大规模生物分子模拟的实例以及跨越百亿亿次门槛所带来的未来可能性。接下来,我们讨论在优化这些强大资源的使用方面需要克服的挑战。最后,我们列出几个可以用这种新计算机架构进行研究的重大挑战性问题作为结尾。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验