Suppr超能文献

相似文献

1
Embracing exascale computing in nucleic acid simulations.
Curr Opin Struct Biol. 2024 Aug;87:102847. doi: 10.1016/j.sbi.2024.102847. Epub 2024 May 29.
2
Simulations of nucleic acids and their complexes.
Acc Chem Res. 2002 Jun;35(6):350-7. doi: 10.1021/ar010023y.
3
Advancing biomolecular simulation through exascale HPC, AI and quantum computing.
Curr Opin Struct Biol. 2024 Aug;87:102826. doi: 10.1016/j.sbi.2024.102826. Epub 2024 May 10.
4
Multiscale biomolecular simulations in the exascale era.
Curr Opin Struct Biol. 2024 Jun;86:102821. doi: 10.1016/j.sbi.2024.102821. Epub 2024 Apr 29.
5
Impact of quantum and neuromorphic computing on biomolecular simulations: Current status and perspectives.
Curr Opin Struct Biol. 2024 Aug;87:102817. doi: 10.1016/j.sbi.2024.102817. Epub 2024 May 24.
6
New developments in force fields for biomolecular simulations.
Curr Opin Struct Biol. 2018 Apr;49:129-138. doi: 10.1016/j.sbi.2018.02.002. Epub 2018 Feb 22.
7
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19.
9
The next revolution in computational simulations: Harnessing AI and quantum computing in molecular dynamics.
Curr Opin Struct Biol. 2024 Dec;89:102919. doi: 10.1016/j.sbi.2024.102919. Epub 2024 Sep 21.
10
Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS.
PLoS One. 2023 Aug 3;18(8):e0288264. doi: 10.1371/journal.pone.0288264. eCollection 2023.

引用本文的文献

1
Sequence-Dependent Shape and Stiffness of DNA and RNA Double Helices: Hexanucleotide Scale and Beyond.
J Chem Inf Model. 2025 Sep 8;65(17):9208-9229. doi: 10.1021/acs.jcim.5c00576. Epub 2025 Aug 25.
2
Refining Ligand Poses in RNA/Ligand Complexes of Pharmaceutical Relevance: A Perspective by QM/MM Simulations and NMR Measurements.
J Phys Chem Lett. 2025 Feb 20;16(7):1702-1708. doi: 10.1021/acs.jpclett.4c03456. Epub 2025 Feb 10.

本文引用的文献

1
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials.
J Phys Chem B. 2024 Jan 11;128(1):109-116. doi: 10.1021/acs.jpcb.3c06662. Epub 2023 Dec 28.
2
Designing RNA switches for synthetic biology using inverse-RNA-folding.
Trends Biotechnol. 2024 May;42(5):517-521. doi: 10.1016/j.tibtech.2023.11.005. Epub 2023 Dec 1.
3
Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors.
JACS Au. 2023 Nov 2;3(11):3165-3180. doi: 10.1021/jacsau.3c00503. eCollection 2023 Nov 27.
4
Assessment of A- to B- DNA Transitions Utilizing the Drude Polarizable Force Field.
J Chem Theory Comput. 2023 Dec 12;19(23):8955-8966. doi: 10.1021/acs.jctc.3c01002. Epub 2023 Nov 28.
5
Simple Adjustment of Intranucleotide Base-Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations.
J Chem Theory Comput. 2023 Nov 28;19(22):8423-8433. doi: 10.1021/acs.jctc.3c00990. Epub 2023 Nov 9.
6
Assessment of three-dimensional RNA structure prediction in CASP15.
Proteins. 2023 Dec;91(12):1747-1770. doi: 10.1002/prot.26602. Epub 2023 Oct 24.
7
Classification of PTEN missense VUS through exascale simulations.
Brief Bioinform. 2023 Sep 22;24(6). doi: 10.1093/bib/bbad361.
8
Deciphering RNA splicing logic with interpretable machine learning.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2221165120. doi: 10.1073/pnas.2221165120. Epub 2023 Oct 5.
9
Tertiary structure assessment at CASP15.
Proteins. 2023 Dec;91(12):1616-1635. doi: 10.1002/prot.26593. Epub 2023 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验