Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA, 92866, USA.
Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA, 92866, USA.
Comput Biol Med. 2024 Mar;171:108121. doi: 10.1016/j.compbiomed.2024.108121. Epub 2024 Feb 9.
Predicting inpatient length of stay (LoS) is important for hospitals aiming to improve service efficiency and enhance management capabilities. Patient medical records are strongly associated with LoS. However, due to diverse modalities, heterogeneity, and complexity of data, it becomes challenging to effectively leverage these heterogeneous data to put forth a predictive model that can accurately predict LoS. To address the challenge, this study aims to establish a novel data-fusion model, termed as DF-Mdl, to integrate heterogeneous clinical data for predicting the LoS of inpatients between hospital discharge and admission. Multi-modal data such as demographic data, clinical notes, laboratory test results, and medical images are utilized in our proposed methodology with individual "basic" sub-models separately applied to each different data modality. Specifically, a convolutional neural network (CNN) model, which we termed CRXMDL, is designed for chest X-ray (CXR) image data, two long short-term memory networks are used to extract features from long text data, and a novel attention-embedded 1D convolutional neural network is developed to extract useful information from numerical data. Finally, these basic models are integrated to form a new data-fusion model (DF-Mdl) for inpatient LoS prediction. The proposed method attains the best R and E values of 0.6039 and 0.6042 among competitors for the LoS prediction on the Medical Information Mart for Intensive Care (MIMIC)-IV test dataset. Empirical evidence suggests better performance compared with other state-of-the-art (SOTA) methods, which demonstrates the effectiveness and feasibility of the proposed approach.
预测住院患者的住院时间(Length of Stay,LoS)对于旨在提高服务效率和增强管理能力的医院非常重要。患者的医疗记录与 LoS 密切相关。然而,由于数据的多样性、异质性和复杂性,有效地利用这些异构数据来提出能够准确预测 LoS 的预测模型变得具有挑战性。为了解决这一挑战,本研究旨在建立一种新的数据融合模型,称为 DF-Mdl,用于整合异构临床数据,以预测医院出院和入院之间住院患者的 LoS。我们的方法利用多模态数据,如人口统计学数据、临床记录、实验室检查结果和医学图像,分别应用于每个不同的数据模态的单个“基本”子模型。具体来说,我们设计了一个卷积神经网络(CNN)模型 CRXMDL 用于胸部 X 射线(CXR)图像数据,使用两个长短期记忆网络从长文本数据中提取特征,以及开发了一个新的注意力嵌入 1D 卷积神经网络从数值数据中提取有用信息。最后,这些基本模型被集成到一个新的数据融合模型(DF-Mdl)中,用于住院患者 LoS 预测。在 MIMIC-IV 测试数据集上进行的 LoS 预测中,所提出的方法在竞争对手中实现了最佳的 R 和 E 值 0.6039 和 0.6042。实证证据表明,与其他最先进的(State-of-the-art,SOTA)方法相比,该方法具有更好的性能,证明了所提出方法的有效性和可行性。