Suppr超能文献

用于时变医学数据的多模态融合模型:解决序列融合中的长期依赖性和内存挑战

Multi-modal fusion model for Time-Varying medical Data: Addressing Long-Term dependencies and memory challenges in sequence fusion.

作者信息

Ma Moxuan, Wang Muyu, Wei Lan, Fei Xiaolu, Chen Hui

机构信息

School of Biomedical Engineering, Capital Medical University, No.10, Xitoutiao, You An Men, Fengtai District, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, No.10, Xitoutiao, You An Men, Fengtai District, Beijing 100069, China.

Information Center, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China.

出版信息

J Biomed Inform. 2025 May;165:104823. doi: 10.1016/j.jbi.2025.104823. Epub 2025 Apr 4.

Abstract

BACKGROUND

Multi-modal time-varying data continuously generated during a patient's hospitalization reflects the patient's disease progression. Certain patient conditions may be associated with long-term states, which is a weakness of current medical multi-modal time-varying data fusion models. Daily ward round notes, as time-series long texts, are often neglected by models.

OBJECTIVE

This study aims to develop an effective medical multi-modal time-varying data fusion model capable of extracting features from long sequences and long texts while capturing long-term dependencies.

METHODS

We proposed a model called medical multi-modal fusion for long-term dependencies (MMF-LD) that fuses time-varying and time-invariant, tabular, and textual data. A progressive multi-modal fusion (PMF) strategy was introduced to address information loss in multi-modal time series fusion, particularly for long time-varying texts. With the integration of the attention mechanism, the long short-term storage memory (LSTsM) gained enhanced capacity to extract long-term dependencies. In conjunction with the temporal convolutional network (TCN), it extracted long-term features from time-varying sequences without neglecting the local contextual information of the time series. Model performance was evaluated on acute myocardial infarction (AMI) and stroke datasets for in-hospital mortality risk prediction and long length-of-stay prediction. area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and F1 score were used as evaluation metrics for model performance.

RESULTS

The MMF-LD model demonstrated superior performance compared to other multi-modal time-varying data fusion models in model comparison experiments (AUROC: 0.947 and 0.918 in the AMI dataset, and 0.965 and 0.868 in the stroke dataset; AUPRC: 0.410 and 0.675, and 0.467 and 0.533; F1 score: 0.658 and 0.513, and 0.684 and 0.401). Ablation experiments confirmed that the proposed PMF strategy, LSTsM, and TCN modules all contributed to performance improvements as intended.

CONCLUSIONS

The proposed medical multi-modal time-varying data fusion architecture addresses the challenge of forgetting time-varying long textual information in time series fusion. It exhibits stable performance across multiple datasets and tasks. It exhibits strength in capturing long-term dependencies and shows stable performance across multiple datasets and tasks.

摘要

背景

患者住院期间持续生成的多模态时变数据反映了患者的疾病进展。某些患者状况可能与长期状态相关,这是当前医学多模态时变数据融合模型的一个弱点。日常查房记录作为时间序列长文本,常常被模型忽视。

目的

本研究旨在开发一种有效的医学多模态时变数据融合模型,该模型能够从长序列和长文本中提取特征,同时捕捉长期依赖性。

方法

我们提出了一种名为用于长期依赖性的医学多模态融合(MMF-LD)的模型,该模型融合了时变和时不变的表格数据及文本数据。引入了一种渐进式多模态融合(PMF)策略来解决多模态时间序列融合中的信息丢失问题,特别是对于长时间变化的文本。通过集成注意力机制,长短期存储记忆(LSTsM)获得了更强的提取长期依赖性的能力。结合时间卷积网络(TCN),它从时变序列中提取长期特征,同时不忽略时间序列的局部上下文信息。在急性心肌梗死(AMI)和中风数据集上对模型性能进行评估,以预测住院死亡率风险和预测长期住院时间。使用受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)和F1分数作为模型性能的评估指标。

结果

在模型比较实验中,MMF-LD模型表现出优于其他多模态时变数据融合模型的性能(AMI数据集中的AUROC分别为0.947和0.918,中风数据集中的AUROC分别为0.965和0.868;AUPRC分别为0.410和0.675,以及0.467和0.533;F1分数分别为0.658和0.513,以及0.684和0.401)。消融实验证实,所提出的PMF策略、LSTsM和TCN模块都如预期那样对性能提升做出了贡献。

结论

所提出的医学多模态时变数据融合架构解决了时间序列融合中遗忘时变长文本信息的挑战。它在多个数据集和任务中表现出稳定的性能。它在捕捉长期依赖性方面表现出优势,并在多个数据集和任务中表现出稳定的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验