Suppr超能文献

M3T-LM:一种用于联合预测患者住院时间和死亡率的多模态多任务学习模型。

M3T-LM: A multi-modal multi-task learning model for jointly predicting patient length of stay and mortality.

作者信息

Chen Junde, Li Qing, Liu Feng, Wen Yuxin

机构信息

Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92866, USA.

Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA.

出版信息

Comput Biol Med. 2024 Dec;183:109237. doi: 10.1016/j.compbiomed.2024.109237. Epub 2024 Oct 7.

Abstract

Ensuring accurate predictions of inpatient length of stay (LoS) and mortality rates is essential for enhancing hospital service efficiency, particularly in light of the constraints posed by limited healthcare resources. Integrative analysis of heterogeneous clinic record data from different sources can hold great promise for improving the prognosis and diagnosis level of LoS and mortality. Currently, most existing studies solely focus on single data modality or tend to single-task learning, i.e., training LoS and mortality tasks separately. This limits the utilization of available multi-modal data and prevents the sharing of feature representations that could capture correlations between different tasks, ultimately hindering the model's performance. To address the challenge, this study proposes a novel Multi-Modal Multi-Task learning model, termed as M3T-LM, to integrate clinic records to predict inpatients' LoS and mortality simultaneously. The M3T-LM framework incorporates multiple data modalities by constructing sub-models tailored to each modality. Specifically, a novel attention-embedded one-dimensional (1D) convolutional neural network (CNN) is designed to handle numerical data. For clinical notes, they are converted into sequence data, and then two long short-term memory (LSTM) networks are exploited to model on textual sequence data. A two-dimensional (2D) CNN architecture, noted as CRXMDL, is designed to extract high-level features from chest X-ray (CXR) images. Subsequently, multiple sub-models are integrated to formulate the M3T-LM to capture the correlations between patient LoS and modality prediction tasks. The efficiency of the proposed method is validated on the MIMIC-IV dataset. The proposed method attained a test MAE of 5.54 for LoS prediction and a test F1 of 0.876 for mortality prediction. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) methods in tackling mixed regression and classification tasks.

摘要

确保准确预测住院时长(LoS)和死亡率对于提高医院服务效率至关重要,尤其是考虑到有限医疗资源所带来的限制。对来自不同来源的异构临床记录数据进行综合分析,有望大幅提高LoS和死亡率的预后及诊断水平。目前,大多数现有研究仅关注单一数据模态,或倾向于单任务学习,即分别训练LoS和死亡率任务。这限制了可用多模态数据的利用,并阻碍了能够捕捉不同任务之间相关性的特征表示的共享,最终影响了模型的性能。为应对这一挑战,本研究提出了一种新颖的多模态多任务学习模型,称为M3T-LM,用于整合临床记录以同时预测住院患者的LoS和死亡率。M3T-LM框架通过构建针对每种模态定制的子模型来整合多种数据模态。具体而言,设计了一种新颖的注意力嵌入一维(1D)卷积神经网络(CNN)来处理数值数据。对于临床笔记,将其转换为序列数据,然后利用两个长短期记忆(LSTM)网络对文本序列数据进行建模。设计了一种二维(2D)CNN架构,记为CRXMDL,用于从胸部X光(CXR)图像中提取高级特征。随后,整合多个子模型以构建M3T-LM,以捕捉患者LoS与模态预测任务之间的相关性。在MIMIC-IV数据集上验证了所提方法的有效性。所提方法在LoS预测方面的测试平均绝对误差(MAE)为5.54,在死亡率预测方面的测试F1值为0.876。实验结果表明,我们的方法在处理混合回归和分类任务方面优于现有最先进(SOTA)方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验