Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia.
School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
Nat Commun. 2024 Feb 21;15(1):1441. doi: 10.1038/s41467-024-45176-4.
Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones.
细菌通过多种方式适应其直接环境中的选择压力。一种机制涉及独立突变的获得,这些突变会使关键途径失活或改变,从而通过趋同进化提供适应的特征。属于序列型 95 (ST95) 的肠外致病性大肠杆菌 (ExPEC) 是一种全球克隆,经常与严重的人类感染有关,包括急性肾盂肾炎、败血症和新生儿脑膜炎。在这里,我们分析了一个公开的 613 个 ST95 基因组数据集,发现了一系列丧失功能的突变,这些突变会破坏 55.3%的菌株中纤维素的产生或修饰。我们表明,不能产生纤维素会显著增强 ST95 在新生大鼠脑膜炎模型中的侵袭性感染,导致新生幼鼠肠道屏障完整性的破坏,并增强向肝脏、脾脏和大脑的传播。与这些观察结果一致,在尿路感染的小鼠模型中,破坏纤维素的产生会增强先天免疫信号和组织中性粒细胞浸润。在其他毒力 ExPEC ST、志贺氏菌和沙门氏菌中也发现了破坏纤维素产生的突变,这表明与引起严重人类感染的许多肠杆菌科存在相关性。总之,我们的研究结果为超毒力肠杆菌科克隆的出现提供了一个解释。