Suppr超能文献

NSCSO:一种新型多目标非支配排序鸡群优化算法

NSCSO: a novel multi-objective non-dominated sorting chicken swarm optimization algorithm.

作者信息

Huang Huajuan, Zheng Baofeng, Wei Xiuxi, Zhou Yongquan, Zhang Yuedong

机构信息

College of Artificial Intelligence, Guangxi Minzu University, Nanning, 530006, China.

College of Electronic Information, Guangxi Minzu University, Nanning, 530006, China.

出版信息

Sci Rep. 2024 Feb 21;14(1):4310. doi: 10.1038/s41598-024-54991-0.

Abstract

Addressing the challenge of efficiently solving multi-objective optimization problems (MOP) and attaining satisfactory optimal solutions has always posed a formidable task. In this paper, based on the chicken swarm optimization algorithm, proposes the non-dominated sorting chicken swarm optimization (NSCSO) algorithm. The proposed approach involves assigning ranks to individuals in the chicken swarm through fast non-dominance sorting and utilizing the crowding distance strategy to sort particles within the same rank. The MOP is tackled based on these two strategies, with the integration of an elite opposition-based learning strategy to facilitate the exploration of optimal solution directions by individual roosters. NSCSO and 6 other excellent algorithms were tested in 15 different benchmark functions for experiments. By comprehensive comparison of the test function results and Friedman test results, the results obtained by using the NSCSO algorithm to solve the MOP problem have better performance. Compares the NSCSO algorithm with other multi-objective optimization algorithms in six different engineering design problems. The results show that NSCSO not only performs well in multi-objective function tests, but also obtains realistic solutions in multi-objective engineering example problems.

摘要

有效解决多目标优化问题(MOP)并获得令人满意的最优解一直是一项艰巨的任务。本文基于鸡群优化算法,提出了非支配排序鸡群优化(NSCSO)算法。该方法通过快速非支配排序为鸡群中的个体分配等级,并利用拥挤距离策略对同一等级内的粒子进行排序。基于这两种策略来解决多目标优化问题,并集成了基于精英反向学习的策略,以促进个体公鸡对最优解方向的探索。NSCSO算法和其他6种优秀算法在15个不同的基准函数上进行了测试实验。通过对测试函数结果和Friedman检验结果的综合比较,使用NSCSO算法解决多目标优化问题所获得的结果具有更好的性能。在六个不同的工程设计问题中,将NSCSO算法与其他多目标优化算法进行了比较。结果表明,NSCSO不仅在多目标函数测试中表现良好,而且在多目标工程实例问题中也能获得实际可行的解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6327/10881516/70d42a92715b/41598_2024_54991_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验