Suppr超能文献

一种用于解决工程问题的混合粒子群优化算法。

A hybrid particle swarm optimization algorithm for solving engineering problem.

作者信息

Qiao Jinwei, Wang Guangyuan, Yang Zhi, Luo Xiaochuan, Chen Jun, Li Kan, Liu Pengbo

机构信息

School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.

Shandong Institute of Mechanical Design and Research, Jinan, 250353, China.

出版信息

Sci Rep. 2024 Apr 10;14(1):8357. doi: 10.1038/s41598-024-59034-2.

Abstract

To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.

摘要

为克服过早收敛和易陷入局部最优解的缺点,本文提出一种基于多种混合策略的改进粒子群优化算法(命名为NDWPSO算法)。首先,利用基于精英反向学习的方法初始化粒子位置矩阵。其次,给出动态惯性权重参数以提高迭代初期的全局搜索速度。第三,提出一种新的局部最优跳出策略以克服“早熟”问题。最后,该算法在后期迭代中应用来自鲸鱼优化算法(WOA)的螺旋收缩搜索策略和差分进化(DE)变异策略以加快收敛速度。在23个基准测试函数和三个实际工程问题上,将NDWPSO与其他8种著名的自然启发式算法(3种粒子群优化变体和5种其他智能算法)进行了进一步比较。仿真结果证明,对于所有49组数据,NDWPSO算法比其他3种粒子群优化变体获得了更好的结果。与其他5种智能算法相比,对于具有3种维度空间(维度=30、50、100)的基准函数( ),NDWPSO获得了69.2%、84.6%和84.6%的最佳结果,对于10个固定多峰基准函数获得了80%的最佳最优解。此外,对于所有3个经典实际工程问题,NDWPSO都获得了最佳设计方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a97/11375002/b62ad5d1d391/41598_2024_59034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验