Suppr超能文献

ADVCSO:用于组合优化问题的鸡群优化算法的自适应动态增强变体

ADVCSO: Adaptive Dynamically Enhanced Variant of Chicken Swarm Optimization for Combinatorial Optimization Problems.

作者信息

Wu Kunwei, Wang Liangshun, Liu Mingming

机构信息

Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China.

Research Institute of Information Technology, Tsinghua University, Beijing 100101, China.

出版信息

Biomimetics (Basel). 2025 May 9;10(5):303. doi: 10.3390/biomimetics10050303.

Abstract

High-dimensional complex optimization problems are pervasive in engineering and scientific computing, yet conventional algorithms struggle to meet collaborative optimization requirements due to computational complexity. While Chicken Swarm Optimization (CSO) demonstrates an intuitive understanding and straightforward implementation for low-dimensional problems, it suffers from limitations including a low convergence precision, uneven initial solution distribution, and premature convergence. This study proposes an Adaptive Dynamically Enhanced Variant of Chicken Swarm Optimization (ADVCSO) algorithm. First, to address the uneven initial solution distribution in the original algorithm, we design an elite perturbation initialization strategy based on good point sets, combining low-discrepancy sequences with Gaussian perturbations to significantly improve the search space coverage. Second, targeting the exploration-exploitation imbalance caused by fixed role proportions, a dynamic role allocation mechanism is developed, integrating cosine annealing strategies to adaptively regulate flock proportions and update cycles, thereby enhancing exploration efficiency. Finally, to mitigate the premature convergence induced by single update rules, hybrid mutation strategies are introduced through phased mutation operators and elite dimension inheritance mechanisms, effectively reducing premature convergence risks. Experiments demonstrate that the ADVCSO significantly outperforms state-of-the-art algorithms on 27 of 29 CEC2017 benchmark functions, achieving a 2-3 orders of magnitude improvement in convergence precision over basic CSO. In complex composite scenarios, its convergence accuracy approaches that of the championship algorithm JADE within a 10 magnitude difference. For collaborative multi-subproblem optimization, the ADVCSO exhibits a superior performance in both Multiple Traveling Salesman Problems (MTSPs) and Multiple Knapsack Problems (MKPs), reducing the maximum path length in MTSPs by 6.0% to 358.27 units while enhancing the MKP optimal solution success rate by 62.5%. The proposed algorithm demonstrates an exceptional performance in combinatorial optimization and holds a significant engineering application value.

摘要

高维复杂优化问题在工程和科学计算中普遍存在,但由于计算复杂性,传统算法难以满足协同优化要求。虽然鸡群优化算法(CSO)对低维问题展示了直观的理解和简单的实现方式,但它存在收敛精度低、初始解分布不均匀和早熟收敛等局限性。本研究提出了一种自适应动态增强的鸡群优化算法变体(ADVCSO)。首先,为了解决原始算法中初始解分布不均匀的问题,我们设计了一种基于好点集的精英扰动初始化策略,将低差异序列与高斯扰动相结合,显著提高搜索空间覆盖率。其次,针对固定角色比例导致的探索-利用不平衡问题,开发了一种动态角色分配机制,集成余弦退火策略以自适应调节鸡群比例和更新周期,从而提高探索效率。最后,为了减轻单一更新规则引起的早熟收敛,通过分阶段变异算子和精英维度继承机制引入混合变异策略,有效降低早熟收敛风险。实验表明,ADVCSO在29个CEC2017基准函数中的27个上显著优于现有算法,与基本CSO相比,收敛精度提高了2至3个数量级。在复杂的复合场景中,其收敛精度与冠军算法JADE相差不到10个数量级。对于协同多子问题优化,ADVCSO在多个旅行商问题(MTSPs)和多个背包问题(MKPs)中均表现出卓越性能,将MTSPs中的最大路径长度减少了6.0%,降至358.27个单位,同时将MKP最优解成功率提高了62.5%。所提出的算法在组合优化中表现出色,具有重要的工程应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3b9/12108713/9b5dfef984f8/biomimetics-10-00303-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验