Renzaglia Karen, Duran Emily, Sagwan-Barkdoll Laxmi, Henry Jason
Southern Illinois University Carbondale, Department of Plant Biology, Carbondale, IL, United States.
Southeast Missouri University, Department of Biology, Cape Girardeau, MO, United States.
Front Plant Sci. 2024 Feb 7;15:1357324. doi: 10.3389/fpls.2024.1357324. eCollection 2024.
Leptoids, the food-conducting cells of polytrichaceous mosses, share key structural features with sieve elements in tracheophytes, including an elongated shape with oblique end walls containing modified plasmodesmata or pores. In tracheophytes, callose is instrumental in developing the pores in sieve elements that enable efficient photoassimilate transport. Aside from a few studies using aniline blue fluorescence that yielded confusing results, little is known about callose in moss leptoids.
Callose location and abundance during the development of leptoid cell walls was investigated in the moss commune using aniline blue fluorescence and quantitative immunogold labeling (label density) in the transmission electron microscope. To evaluate changes during abiotic stress, callose abundance in leptoids of hydrated plants was compared to plants dried for 14 days under field conditions. A bioinformatic study to assess the evolution of callose within and across bryophytes was conducted using callose synthase (CalS) genes from 46 bryophytes (24 mosses, 15 liverworts, and 7 hornworts) and one representative each of five tracheophyte groups.
Callose abundance increases around plasmodesmata from meristematic cells to end walls in mature leptoids. Controlled drying resulted in a significant increase in label density around plasmodesmata and pores over counts in hydrated plants. Phylogenetic analysis of the CalS protein family recovered main clades (A, B, and C). Different from tracheophytes, where the greatest diversity of homologs is found in clade A, the majority of gene duplication in bryophytes is in clade B.
This work identifies callose as a crucial cell wall polymer around plasmodesmata from their inception to functioning in leptoids, and during water stress similar to sieve elements of tracheophytes. Among bryophytes, mosses exhibit the greatest number of multiple duplication events, while only two duplications are revealed in hornwort and none in liverworts. The absence in bryophytes of the CalS 7 gene that is essential for sieve pore development in angiosperms, reveals that a different gene is responsible for synthesizing the callose associated with leptoids in mosses.
多枝藓类植物的输导细胞——瘦细胞,与维管植物的筛管分子具有关键的结构特征,包括呈细长形,具倾斜的端壁,端壁上含有特化的胞间连丝或孔。在维管植物中,胼胝质对于在筛管分子中形成能使光合产物高效运输的孔至关重要。除了少数使用苯胺蓝荧光的研究得出了令人困惑的结果外,关于藓类瘦细胞中的胼胝质我们知之甚少。
利用苯胺蓝荧光和透射电子显微镜下的定量免疫金标记(标记密度),研究了多枝藓中瘦细胞壁发育过程中胼胝质的定位和丰度。为了评估非生物胁迫期间的变化,将水合植物的瘦细胞中的胼胝质丰度与在田间条件下干燥14天的植物进行了比较。利用46种苔藓植物(24种藓类、15种苔类和7种角苔类)以及五个维管植物类群各一个代表的胼胝质合成酶(CalS)基因,进行了一项生物信息学研究,以评估苔藓植物内部和之间胼胝质的进化。
从分生细胞到成熟瘦细胞的端壁,胞间连丝周围的胼胝质丰度增加。控制干燥导致胞间连丝和孔周围的标记密度比水合植物中的计数显著增加。对CalS蛋白家族的系统发育分析恢复了主要分支(A、B和C)。与维管植物不同,维管植物中同源物的最大多样性存在于分支A中,苔藓植物中的大多数基因重复发生在分支B中。
这项工作确定胼胝质是一种关键的细胞壁聚合物,从其在瘦细胞中形成到发挥功能,以及在水分胁迫期间,它在胞间连丝周围的作用类似于维管植物的筛管分子。在苔藓植物中,藓类表现出最多的多次重复事件,而角苔类仅显示两次重复,苔类则没有重复。被子植物中筛孔发育所必需的CalS 7基因在苔藓植物中不存在,这表明在藓类中,一个不同的基因负责合成与瘦细胞相关的胼胝质。