Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
Planta. 2024 Jul 4;260(2):45. doi: 10.1007/s00425-024-04476-1.
Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
藓类植物的发育会改变质膜通道结构和功能。通过孪生形成次生质膜通道似乎是一个古老的特征。角苔类植物孢子体分生组织中的质膜通道网络类似于被子植物的质膜通道网络。所有陆地植物类群都使用质膜通道(PD)细胞连接进行胞质间通讯。在被子植物的发育过程中,PD 网络通过结构和功能 PD 修饰以及后期细胞分裂形成额外的次生 PD(secPD)进行广泛的重塑。由于关于 PD 动态的可比信息在胚胎植物姐妹群中很少,我们研究了 Anthoceros agrestis(角苔)、Physcomitrium patens(藓)和 Marchantia polymorpha(地钱)成熟组织。与被子植物类似,定量电子显微镜显示所有模式藓类植物的配子体中通过孪生形成 secPD,这导致侧向相邻 PD 对或复杂分支 PD 的形成。这一发现表明 PD 孪生是一种古老的进化机制,可在细胞壁扩张过程中调整 PD 数量。此外,所有藓类植物配子体通过类似于被子植物的分类群特异性策略来修饰其现有的 PD。形成具有增大直径的 II 型样 PD 形态或形成孔对可能是在细胞壁增厚过程中维持 PD 运输速率所必需的。与先前关于具有单个原始细胞的藓类植物配子体单plex 分生组织的报道相似,我们在 A. agrestis 孢子体的多原始基部分生组织中观察到有针对性的 secPD 形成。它们的 PD 网络具有多原始被子植物分生组织的典型特征,这可能暗示着同源起源。我们还讨论了单 plex 和多原始分生组织可能需要具有或不具有 secPD 形成的不同类型的 PD 网络,以控制初始身份和位置信号的维持。