Lustemberg Pablo G, Mao Zhongtian, Salcedo Agustín, Irigoyen Beatriz, Ganduglia-Pirovano M Verónica, Campbell Charles T
Instituto de Catálisis y Petroleoquímica (ICP-CSIC), 28049 Madrid, Spain.
Instituto de Física Rosario (IFIR-CONICET) and Universidad Nacional de Rosario (UNR), S2000EKF Rosario, Santa Fe, Argentina.
ACS Catal. 2021 Aug 20;11(16):10604-10613. doi: 10.1021/acscatal.1c02154. Epub 2021 Aug 11.
Effective catalysts for the direct conversion of methane to methanol and for methane's dry reforming to syngas are Holy Grails of catalysis research toward clean energy technologies. It has recently been discovered that Ni at low loadings on CeO(111) is very active for both of these reactions. Revealing the nature of the active sites in such systems is paramount to a rational design of improved catalysts. Here, we correlate experimental measurements on the CeO(111) surface to show that the most active sites are cationic Ni atoms in clusters at step edges, with a small size wherein they have the highest Ni chemical potential. We clarify the reasons for this observation using density functional theory calculations. Focusing on the activation barrier for C-H bond cleavage during the dissociative adsorption of CH as an example, we show that the size and morphology of the supported Ni nanoparticles together with strong Ni-support bonding and charge transfer at the step edge are key to the high catalytic activity. We anticipate that this knowledge will inspire the development of more efficient catalysts for these reactions.
用于将甲烷直接转化为甲醇以及将甲烷干重整为合成气的高效催化剂,是清洁能源技术催化研究的圣杯。最近发现,负载在CeO(111)上的低含量镍对这两种反应都非常活跃。揭示此类体系中活性位点的本质对于合理设计改进型催化剂至关重要。在此,我们将CeO(111)表面的实验测量结果关联起来,以表明最活跃的位点是台阶边缘簇中的阳离子镍原子,其尺寸较小,且具有最高的镍化学势。我们使用密度泛函理论计算来阐明这一观察结果的原因。以CH解离吸附过程中C-H键断裂的活化能垒为例,我们表明负载型镍纳米颗粒的尺寸和形态,以及台阶边缘处强烈的镍-载体键合和电荷转移是高催化活性的关键。我们预计这一知识将推动这些反应更高效催化剂的开发。