Liu Lili, Wang Xi, Liu Ou, Li Yazhi, Jin Zhen, Tang Sanyi, Wang Xia
Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Complex Systems Research Center, Shanxi University, Taiyuan, 030006, China.
School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, China.
Infect Dis Model. 2024 Feb 8;9(2):354-372. doi: 10.1016/j.idm.2024.02.003. eCollection 2024 Jun.
To effectively combat emerging infectious diseases like COVID-19, it is crucial to adopt strict prevention and control measures promptly to effectively contain the spread of the epidemic. In this paper, we propose a transmission model to investigate the influence of two control strategies: reducing contact numbers and improving medical resources. We examine these strategies in terms of constant control and time-varying control. Through sensitivity analysis on two reproduction numbers of the model with constant control, we demonstrate that reducing contact numbers is more effective than improving medical resources. Furthermore, these two constant controls significantly influence the peak values and timing of infections. Specifically, intensifying control measures can reduce peak values, albeit at the expense of delaying the peak time. In the model with time-varying control, we initially explore the corresponding optimal control problem and derive the characteristic expression of optimal control. Subsequently, we utilize real data from January 10th to April 12th, 2020, in Wuhan city as a case study to perform parameter estimation by using our proposed improved algorithm. Our findings illustrate that implementing optimal control measures can effectively reduce infections and deaths, and shorten the duration of the epidemic. Then, we numerically explore that implementing control measures promptly and increasing intensity to reduce contact numbers can make actual control be more closer to optimized control. Finally, we utilize the real data from October 31st to November 18th, 2021, in Hebei province as a second case study to validate the feasibility of our proposed suggestions.
为有效抗击新冠疫情等新发传染病,及时采取严格防控措施以有效遏制疫情传播至关重要。在本文中,我们提出一个传播模型来研究两种控制策略的影响:减少接触人数和增加医疗资源。我们从固定控制和时变控制方面研究这些策略。通过对固定控制模型的两个再生数进行敏感性分析,我们证明减少接触人数比增加医疗资源更有效。此外,这两种固定控制对感染峰值和时间有显著影响。具体而言,加强控制措施可降低峰值,尽管这是以推迟峰值时间为代价的。在时变控制模型中,我们首先探讨相应的最优控制问题并推导最优控制的特征表达式。随后,我们以2020年1月10日至4月12日武汉市的实际数据为例,使用我们提出的改进算法进行参数估计。我们的研究结果表明,实施最优控制措施可有效减少感染和死亡,并缩短疫情持续时间。然后,我们通过数值模拟发现,及时实施控制措施并加大力度减少接触人数可使实际控制更接近最优控制。最后,我们以2021年10月31日至11月18日河北省的实际数据作为第二个案例研究来验证我们所提建议的可行性。