Zhang Juping, Wang Linlin, Jin Zhen
Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi, 030006, China.
Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, Shanxi, 030006, China.
Infect Dis Model. 2024 Feb 7;9(2):437-457. doi: 10.1016/j.idm.2024.01.008. eCollection 2024 Jun.
In this paper, we analyze the global asymptotic behaviors of a mathematical susceptible-infected(SI) age-infection-structured human immunodeficiency virus(HIV) model with heterogeneous transmission. Mathematical analysis shows that the local and global dynamics are completely determined by the basic reproductive number . If , disease-free equilibrium is globally asymptotically stable. If , it shows that disease-free equilibrium is unstable and the unique endemic equilibrium is globally asymptotically stable. The proofs of global stability utilize Lyapunov functions. Besides, the numerical simulations are illustrated to support these theoretical results and sensitivity analysis of each parameter for is performed by the method of partial rank correlation coefficient(PRCC).
在本文中,我们分析了一个具有异质性传播的数学易感 - 感染(SI)年龄 - 感染结构的人类免疫缺陷病毒(HIV)模型的全局渐近行为。数学分析表明,局部和全局动态完全由基本再生数决定。如果 ,无病平衡点是全局渐近稳定的。如果 ,则表明无病平衡点是不稳定的,并且唯一的地方病平衡点是全局渐近稳定的。全局稳定性的证明利用了李雅普诺夫函数。此外,通过数值模拟来支持这些理论结果,并采用偏秩相关系数(PRCC)方法对 的每个参数进行敏感性分析。