Suppr超能文献

具有异质网络年龄结构的 SIS 模型的传播动力学。

Transmission Dynamics of an SIS Model with Age Structure on Heterogeneous Networks.

机构信息

Department of Mathematics, Shanghai University, Shanghai, 200444, China.

School of Mathematics and Statistics, University of Western Australia, 6009, Crawley, Australia.

出版信息

Bull Math Biol. 2018 Aug;80(8):2049-2087. doi: 10.1007/s11538-018-0445-z. Epub 2018 Jun 11.

Abstract

Infection age is often an important factor in epidemic dynamics. In order to realistically analyze the spreading mechanism and dynamical behavior of epidemic diseases, in this paper, a generalized disease transmission model of SIS type with age-dependent infection and birth and death on a heterogeneous network is discussed. The model allows the infection and recovery rates to vary and depend on the age of infection, the time since an individual becomes infected. We address uniform persistence and find that the model has the sharp threshold property, that is, for the basic reproduction number less than one, the disease-free equilibrium is globally asymptotically stable, while for the basic reproduction number is above one, a Lyapunov functional is used to show that the endemic equilibrium is globally stable. Finally, some numerical simulations are carried out to illustrate and complement the main results. The disease dynamics rely not only on the network structure, but also on an age-dependent factor (for some key functions concerned in the model).

摘要

感染年龄通常是流行动力学中的一个重要因素。为了真实地分析传染病的传播机制和动态行为,本文讨论了具有年龄相关感染、出生和死亡的 SIS 型广义疾病传播模型。该模型允许感染和恢复率随个体感染时间和感染年龄的变化而变化。我们解决了一致持久性问题,并发现该模型具有尖锐的阈值性质,即对于基本再生数小于 1,无病平衡点全局渐近稳定,而对于基本再生数大于 1,则使用李雅普诺夫函数来证明地方病平衡点是全局稳定的。最后,进行了一些数值模拟以说明和补充主要结果。疾病动力学不仅依赖于网络结构,还依赖于年龄相关因素(与模型中某些关键函数有关)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c36d/7088888/116e597bfcc5/11538_2018_445_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验