Deng Rongrui, Lu Guanjie, Wang Zhongting, Tan Shuangshuang, Huang Xueting, Li Rong, Li Menghong, Wang Ronghua, Xu Chaohe, Huang Guangsheng, Wang Jingfeng, Zhou Xiaoyuan, Pan Fusheng
National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, P. R. China.
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, P. R. China.
Small. 2024 Jul;20(30):e2311587. doi: 10.1002/smll.202311587. Epub 2024 Feb 22.
Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (VO) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg, and therefore catalyze the dissociation of Mg-1,2-Dimethoxyethane (Mg-DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode. Meanwhile, the local interlayer expansion can also increase the layer spacing of VO and speed up the magnesiation/demagnesiation kinetics. Benefiting from the structural configuration, MIBs exhibit superb reversible capacity (≈300 mAh g at 50 mA g) and unparalleled cycling stability (15 000 cycles at 2 A g with a capacity of ≈70 mAh g). This approach based on catalytic reactions to regulate the desolvation behavior of the whole interface provides a new idea and reference for the development of high-performance MIBs.
镁离子电池(MIBs)有望成为锂离子电池后时代颇具潜力的候选者,具有高安全性、低成本且几乎无枝晶的特性。然而,强极化镁离子缓慢的扩散动力学和强大的溶剂化能力严重限制了镁离子电池的比容量和寿命。在这项工作中,首次通过用二硫化钼量子点(MQDs)修饰五氧化二钒(VO)将催化去溶剂化引入镁离子电池,并且通过密度泛函理论(DFT)计算表明,MQDs可以有效降低镁离子的去溶剂化能垒,因此催化Mg-1,2-二甲氧基乙烷(Mg-DME)键的解离并释放游离的电解质阳离子,最终有助于阴极内快速的扩散动力学。同时,局部层间膨胀也可以增加VO的层间距并加快镁化/脱镁动力学。受益于这种结构配置,镁离子电池表现出出色的可逆容量(在50 mA g时约为300 mAh g)和无与伦比的循环稳定性(在2 A g下循环15000次,容量约为70 mAh g)。这种基于催化反应来调节整个界面去溶剂化行为的方法为高性能镁离子电池的开发提供了新的思路和参考。