Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081, Ulm, Germany.
Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
Nat Commun. 2018 Nov 30;9(1):5115. doi: 10.1038/s41467-018-07484-4.
Rechargeable magnesium batteries are one of the most promising candidates for next-generation battery technologies. Despite recent significant progress in the development of efficient electrolytes, an on-going challenge for realization of rechargeable magnesium batteries remains to overcome the sluggish kinetics caused by the strong interaction between double charged magnesium-ions and the intercalation host. Herein, we report that a magnesium battery chemistry with fast intercalation kinetics in the layered molybdenum disulfide structures can be enabled by using solvated magnesium-ions ([Mg(DME)]). Our study demonstrates that the high charge density of magnesium-ion may be mitigated through dimethoxyethane solvation, which avoids the sluggish desolvation process at the cathode-electrolyte interfaces and reduces the trapping force of the cathode lattice to the cations, facilitating magnesium-ion diffusion. The concept of using solvation effect could be a general and effective route to tackle the sluggish intercalation kinetics of magnesium-ions, which can potentially be extended to other host structures.
可充电镁电池是下一代电池技术中最有前途的候选者之一。尽管在开发高效电解质方面最近取得了重大进展,但实现可充电镁电池的一个持续挑战仍然是克服由于双电荷镁离子与插层主体之间的强烈相互作用而导致的缓慢动力学。在此,我们报告了一种使用溶剂化镁离子([Mg(DME)])的层状二硫化钼结构中具有快速插层动力学的镁电池化学。我们的研究表明,通过二甲氧基乙烷溶剂化可以减轻镁离子的高电荷密度,从而避免了在阴极-电解质界面处的缓慢去溶剂化过程,并降低了阴极晶格对阳离子的捕获力,促进了镁离子的扩散。利用溶剂化效应的概念可能是解决镁离子缓慢嵌入动力学的一种通用且有效的方法,该方法可能会扩展到其他主体结构。