Huang Kaifeng, Qu Baihua, Shen Xing, Deng Rongrui, Li Rong, Huang Guangsheng, Tang Aitao, Li Qian, Wang Jingfeng, Pan Fusheng
College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401135, China.
Adv Sci (Weinh). 2024 Nov;11(41):e2406451. doi: 10.1002/advs.202406451. Epub 2024 Sep 4.
Magnesium-based batteries have garnered significant attention due to their high energy density, excellent intrinsic safety, and low cost. However, the application process has been hindered by the high Mg ions diffusion barrier in solid-state structures and solid-liquid interphase. To address this issue, a hybrid battery technology based on Mg anode and Fe-based Prussian Blue Analogue cathode doped with functional transition metal ions and N═O bonds is proposed. Combined multiscale experimental characterizations with theoretical calculations, the subtle lattice distortion can create an asymmetric diffusion path for the active ions, which enables reversible extraction with significantly reduced diffusion barriers achieved by synergistic doping. The optimized cathode exhibits a working potential of 2.3 V and an initial discharge capacity of 152 mAh g at 50 mA g. With the preferred electrolyte combined with equivalent concentration [Mg(µ-Cl)(DME)][AlCl] and NaTFSI salt solution, the hybrid system demonstrates superior cycling performance over 200 cycles at a high current density of 200 mA g, maintaining ≈100% coulombic efficiency with superior ion dynamic. The findings are expected to be marked an important step in the further application of high-voltage cathodes for Mg-based hybrid batteries.
镁基电池因其高能量密度、出色的本质安全性和低成本而备受关注。然而,固态结构和固液界面中高的镁离子扩散势垒阻碍了其应用进程。为解决这一问题,提出了一种基于镁阳极和掺杂功能过渡金属离子及N═O键的铁基普鲁士蓝类似物阴极的混合电池技术。结合多尺度实验表征与理论计算,细微的晶格畸变可为活性离子创造不对称扩散路径,通过协同掺杂实现扩散势垒显著降低,从而实现可逆提取。优化后的阴极在50 mA g电流密度下工作电位为2.3 V,初始放电容量为152 mAh g。与优选的电解质(当量浓度为[Mg(µ-Cl)(DME)][AlCl]和NaTFSI盐溶液)相结合,该混合体系在200 mA g的高电流密度下经过200次循环表现出优异的循环性能,并保持约100%的库仑效率以及卓越的离子动力学性能。这些发现有望为镁基混合电池高压阴极的进一步应用迈出重要一步。