Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.
Stat Med. 2024 Mar 15;43(6):1170-1193. doi: 10.1002/sim.9999. Epub 2024 Jan 20.
This research introduces a multivariate -inflated beta regression ( -IBR) modeling approach for the analysis of censored recurrent event data that is particularly useful when there is a mixture of (a) individuals who are generally less susceptible to recurrent events and (b) heterogeneity in duration of event-free periods amongst those who experience events. The modeling approach is applied to a restructured version of the recurrent event data that consists of censored longitudinal times-to-first-event in length follow-up windows that potentially overlap. Multiple imputation (MI) and expectation-solution (ES) approaches appropriate for censored data are developed as part of the model fitting process. A suite of useful analysis outputs are provided from the -IBR model that include parameter estimates to help interpret the (a) and (b) mixture of event times in the data, estimates of mean -restricted event-free duration in a -length follow-up window based on a patient's covariate profile, and heat maps of raw -restricted event-free durations observed in the data with censored observations augmented via averages across MI datasets. Simulations indicate good statistical performance of the proposed -IBR approach to modeling censored recurrent event data. An example is given based on the Azithromycin for Prevention of COPD Exacerbations Trial.
本研究介绍了一种用于分析删失复发事件数据的多元膨胀贝塔回归( -IBR)建模方法,当存在(a)一般较少易患复发事件的个体和(b)经历事件的个体的无事件期持续时间存在异质性时,该方法特别有用。该建模方法应用于由删失的纵向首次事件时间组成的复发事件数据的重构版本,这些时间在潜在重叠的 长度随访窗口中。作为模型拟合过程的一部分,开发了适用于删失数据的多重插补(MI)和期望解决方案(ES)方法。从 -IBR 模型中提供了一系列有用的分析输出,包括参数估计值,以帮助解释数据中(a)和(b)事件时间的混合,基于患者协变量特征的 -长度随访窗口中平均 -受限无事件持续时间的估计值,以及数据中原始 -受限无事件持续时间的热图,其中通过 MI 数据集的平均值来增加删失观察值。模拟表明,所提出的用于建模删失复发事件数据的 -IBR 方法具有良好的统计性能。基于阿奇霉素预防 COPD 恶化试验提供了一个示例。