Suppr超能文献

利用群体智能和进化算法优化同步辐射参数

Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms.

作者信息

Karaca Adnan Sahin, Bostanci Erkan, Ketenoglu Didem, Harder Manuel, Canbay Ali Can, Ketenoglu Bora, Eren Engin, Aydin Ayhan, Yin Zhong, Guzel Mehmet Serdar, Martins Michael

机构信息

Department of Computer Engineering, Ankara University, 06830 Ankara, Türkiye.

Department of Engineering Physics, Ankara University, 06100 Ankara, Türkiye.

出版信息

J Synchrotron Radiat. 2024 Mar 1;31(Pt 2):420-429. doi: 10.1107/S1600577524000717. Epub 2024 Feb 22.

Abstract

Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick-Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives - minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups.

摘要

在同步加速器光束线上,每次实验对每个光学元件进行对准都需要数天甚至数周时间,这耗费了宝贵的束流时间。进化算法(EAs)是基于达尔文进化论的高效启发式搜索方法,可用于不同应用领域的多目标优化问题。在本研究中,针对两种不同的实验装置(包括透镜和镜子等光学元件)对同步加速器光束的通量和光斑尺寸进行了优化。使用群体智能(SI)算法通过X射线追踪器光束线模拟器进行了计算,并且为了进行比较,使用进化算法对相同的装置进行了优化。本研究中用于两种不同实验装置的进化算法和群体智能算法包括遗传算法(GA)、非支配排序遗传算法II(NSGA-II)、粒子群优化算法(PSO)和人工蜂群算法(ABC)。其中一种算法用于优化透镜位置,另一种算法则专注于优化柯克帕特里克-贝兹镜的焦距。首先,使用单目标进化算法并分别检查光斑尺寸或通量值。在比较单目标算法之后,针对最小光斑尺寸和最大通量这两个目标运行多目标进化算法NSGA-II。由于这些过程会生成随机解且模拟器也会产生随机解,因此每种算法配置都针对蒙特卡罗模拟运行了多次。结果表明,在所有装置中粒子群优化算法给出了最佳值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2610/10914178/29f4b0af077a/s-31-00420-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验