Alcock Simon G, Nistea Ioana Theodora, Signorato Riccardo, Owen Robin L, Axford Daniel, Sutter John P, Foster Andrew, Sawhney Kawal
Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
S.RI. Tech s.r.l.s, Viale del Lavoro 42A, 35010 Vigonza, Padova, Italy.
J Synchrotron Radiat. 2019 Jan 1;26(Pt 1):45-51. doi: 10.1107/S1600577518015965.
The tangential curvature of actively bent X-ray mirrors at synchrotron radiation and X-ray free-electron laser (XFEL) facilities is typically only changed every few hours or even days. This operation can take tens of minutes for active optics with multiple bending actuators and often requires expert guidance using in situ monitoring devices. Hence, the dynamic performance of active X-ray optics for synchrotron beamlines has historically not been exploited. This is in stark contrast to many other scientific fields. However, many areas of synchrotron radiation and XFEL science, including macromolecular crystallography, could greatly benefit from the ability to change the size and shape of the X-ray beam rapidly and continuously. The advantages of this innovative approach are twofold: a large reduction in the dead time required to change the size of the X-ray beam for different-sized samples and the possibility of making multiple changes to the beam during the measurement of a single sample. In the preceding paper [Part I; Alcock, Nistea, Signorato & Sawhney (2019), J. Synchrotron Rad. 26, 36-44], which accompanies this article, high-speed visible-light Fizeau interferometry was used to identify the factors which influence the dynamic bending behaviour of piezoelectric bimorph deformable X-ray mirrors. Building upon this ex situ metrology study, provided here is the first synchrotron radiation beamline implementation of high-speed adaptive X-ray optics using two bimorphs operating as a Kirkpatrick-Baez pair. With optimized substrates, novel opto-mechanical holders and a next-generation high-voltage power supply, the size of an X-ray beam was rapidly and repeatedly switched in <10 s. Of equal importance, it is also shown that compensation of piezoelectric creep ensures that the X-ray beam size remains stable for more than 1 h after making a major change. The era of high-speed adaptive X-ray optics for synchrotron radiation and XFEL beamlines has begun.
在同步辐射和X射线自由电子激光(XFEL)设施中,主动弯曲的X射线镜的切向曲率通常每隔几小时甚至几天才会改变一次。对于具有多个弯曲致动器的主动光学器件,此操作可能需要数十分钟,并且通常需要使用原位监测设备的专家指导。因此,同步辐射光束线的主动X射线光学器件的动态性能在历史上一直未得到充分利用。这与许多其他科学领域形成了鲜明对比。然而,同步辐射和XFEL科学的许多领域,包括大分子晶体学,都可以从快速连续改变X射线束的大小和形状的能力中大大受益。这种创新方法的优点有两个:大幅减少为不同尺寸样品改变X射线束大小所需的死时间,以及在单个样品测量期间对光束进行多次改变的可能性。在随本文一同发表的前一篇论文[第一部分;阿尔科克、尼斯泰亚、西尼奥拉托和索恩尼(2019年),《同步辐射杂志》26卷,第36 - 44页]中,使用高速可见光菲佐干涉测量法来确定影响压电双压电晶片可变形X射线镜动态弯曲行为的因素。基于这项非原位计量学研究,本文首次展示了在同步辐射光束线上使用作为柯克帕特里克 - 贝兹对运行的两个双压电晶片实现高速自适应X射线光学器件。通过优化的基板、新颖的光机械支架和下一代高压电源,X射线束的大小在不到10秒的时间内被快速且反复地切换。同样重要的是,还表明压电蠕变的补偿确保了在进行重大改变后,X射线束大小在超过1小时的时间内保持稳定。同步辐射和XFEL光束线的高速自适应X射线光学器件时代已经开启。