Suppr超能文献

自治和非自治修正莱斯利-高尔模型的分岔分析

Bifurcation analysis of autonomous and nonautonomous modified Leslie-Gower models.

作者信息

Roy Subarna, Sk Nazmul, Kumar Tiwari Pankaj

机构信息

Department of Basic Science and Humanities, Indian Institute of Information Technology, Bhagalpur 813210, India.

Department of Mathematics, University of Kalyani, Kalyani 741235, India.

出版信息

Chaos. 2024 Feb 1;34(2). doi: 10.1063/5.0171936.

Abstract

In ecological systems, the predator-induced fear dampens the prey's birth rate; yet, it fails to extinguish their population, as they endure and survive even under significant fear-induced costs. In this study, we unveil a modified Leslie-Gower predator-prey model by incorporating the fear of predators, cooperative hunting, and predator-taxis sensitivity. We embark upon an exploration of the positivity and boundedness of solutions, unearthing ecologically viable equilibrium points and their stability conditions governed by the model parameters. Delving deeper, we unravel the scenario of transcritical, saddle-node, Hopf, Bogdanov-Takens, and generalized-Hopf bifurcations within the system's intricate dynamics. Additionally, we observe the bistable nature of the system under some parametric conditions. Further, the nonautonomous extension of our model introduces the intriguing interplay of seasonality in some crucial parameters. We establish a set of sufficient conditions that guarantee the permanence of the seasonally driven system. By conducting a numerical study on the seasonally forced model, we observe a myriad of phenomena manifesting the predator-prey dynamics. Notably, periodic solutions, higher periodic solutions, and bursting patterns emerge, alongside intriguing chaotic dynamics. Specifically, seasonal variations of the predator-taxis sensitivity and hunting cooperation can lead to the extinction of prey species and even the control of chaotic (higher periodic) solutions through the generation of a simple periodic solution. Remarkably, the seasonal forcing has the capacity to govern the chaotic behavior, leading to an exceptionally quasi-periodic arrangement in both prey and predator populations.

摘要

在生态系统中,捕食者引发的恐惧会抑制猎物的出生率;然而,它无法使猎物种群灭绝,因为即使在因恐惧而产生的巨大代价下,猎物仍能忍受并存活下来。在本研究中,我们通过纳入对捕食者的恐惧、合作狩猎和捕食者趋性敏感性,揭示了一个修正的莱斯利 - 高尔捕食者 - 猎物模型。我们着手探索解的正性和有界性,找出生态上可行的平衡点及其由模型参数决定的稳定性条件。深入研究后,我们揭示了系统复杂动态中跨临界、鞍结、霍普夫、博格达诺夫 - 塔克恩斯和广义霍普夫分岔的情形。此外,我们观察到在某些参数条件下系统的双稳态性质。进一步地,我们模型的非自治扩展引入了一些关键参数季节性的有趣相互作用。我们建立了一组保证季节性驱动系统持久性的充分条件。通过对季节性强迫模型进行数值研究,我们观察到众多体现捕食者 - 猎物动态的现象。值得注意的是,出现了周期解、高阶周期解和爆发模式,以及有趣的混沌动态。具体而言,捕食者趋性敏感性和狩猎合作的季节性变化可能导致猎物种群灭绝,甚至通过产生一个简单周期解来控制混沌(高阶周期)解。显著的是,季节性强迫有能力控制混沌行为,导致猎物和捕食者种群出现异常的准周期排列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验