Department of Mathematics, Visva-Bharati, Santiniketan 731235, India.
Department of Mathematics, Faculty of Science and Arts-Rabigh, King Abdulaziz University, Rabigh-25732, Saudi Arabia.
Math Biosci Eng. 2019 Jun 6;16(5):5146-5179. doi: 10.3934/mbe.2019258.
The predation strategy for predators and the avoidance strategy of prey are important topics in ecology and evolutionary biology. Both prey and predators adjust their behaviours in order to gain the maximal benefits and to increase their biomass for each. In the present paper, we consider a modified Leslie-Gower predator-prey model where predators cooperate during hunting and due to fear of predation risk, prey populations show anti-predator behaviour. We investigate step by step the impact of hunting cooperation and fear effect on the dynamics of the system. We observe that in the absence of fear effect, hunting cooperation can induce both supercritical and subcritical Hopf- bifurcations. It is also observed that fear factor can stabilize the predator-prey system by excluding the existence of periodic solutions and makes the system more robust compared to hunting cooperation. Moreover, the system shows two different types of bi-stabilities behaviour: one is between coexisting equilibrium and limit cycle oscillation, and another is between prey-free equilibrium and coexisting equilibrium. We also observe generalized Hopf-bifurcation and Bogdanov-Takens bifurcation in two parameter bifurcation analysis. We perform extensive numerical simulations for supporting evidence of our analytical findings.
捕食者的捕食策略和猎物的逃避策略是生态学和进化生物学中的重要课题。为了获得最大的利益并增加生物量,猎物和捕食者都会调整自己的行为。在本文中,我们考虑了一个改进的 Leslie-Gower 捕食者-猎物模型,其中捕食者在狩猎时会合作,并且由于对捕食风险的恐惧,猎物种群会表现出反捕食行为。我们逐步研究了狩猎合作和恐惧效应对系统动态的影响。我们观察到,在没有恐惧效应的情况下,狩猎合作可以诱导超临界和亚临界 Hopf 分岔。还观察到,恐惧因素可以通过排除周期解的存在来稳定捕食者-猎物系统,使其与狩猎合作相比更具鲁棒性。此外,该系统表现出两种不同类型的双稳性行为:一种是共存平衡点和极限环振荡之间,另一种是无猎物平衡点和共存平衡点之间。我们还在双参数分岔分析中观察到了广义 Hopf 分岔和 Bogdanov-Takens 分岔。我们进行了广泛的数值模拟,以支持我们的分析结果。