Suppr超能文献

ReTimeML:一种支持 LC-MS/MS 分析神经酰胺的保留时间预测器。

ReTimeML: a retention time predictor that supports the LC-MS/MS analysis of sphingolipids.

机构信息

ForeFront, Brain and Mind Centre, The University of Sydney, Sydney, Australia.

Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

Sci Rep. 2024 Feb 22;14(1):4375. doi: 10.1038/s41598-024-53860-0.

Abstract

The analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC-MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC-MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC-MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance.

摘要

使用液相色谱-串联质谱(LC-MS/MS)分析神经酰胺(Cer)和鞘磷脂(SM)脂质种类仍然具有挑战性,因为它们的前体质量和碎片可以对应于多种分子排列。为了解决这个限制,我们开发了 ReTimeML,这是一款免费软件,可自动确定复杂色谱图中 Cer 和 SM 脂质谱的预期保留时间(RT)。ReTimeML 的工作原理是,LC-MS/MS 实验具有从整个分析过程中使用的内部标准、校准物或质控物预先确定的 RT。作为参考 RT,ReTimeML 随后使用其基于机器的质量与电荷(m/z)与 RT 分布的回归库外推未知物的 RT,这不需要为适应不同的 LC-MS/MS 管道进行模型重新训练。我们验证了 ReTimeML 在不同生物、组织和 LC-MS/MS 设置下各种 Cer 和 SM 结构的 RT 估计值,与用户注释相比,平均方差在 0.23%至 2.43%之间。ReTimeML 还有助于从健康志愿者的配对血清-脑脊液中同量异位分布中区分 SM 身份,使我们能够识别出一系列与两种生物流体相关的非典型 SM,这些 SM 由多不饱和结构组成,增加了对代谢清除的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c4/10883992/3327f2958150/41598_2024_53860_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验