Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands.
Department of Pediatrics, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands.
Skelet Muscle. 2024 Feb 22;14(1):3. doi: 10.1186/s13395-024-00335-5.
Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput.
Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week.
As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models.
These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies.
人类诱导多能干细胞(iPSC)衍生的 3D 组织工程化骨骼肌(3D-TESM)为疾病建模提供了先进的技术。然而,由于人类个体之间存在固有遗传异质性,因此通常难以将与疾病相关的检测结果与随机变异性区分开来。使用基因编辑生成遗传匹配的同基因对照可以降低变异性,但生成同基因 hiPSC 衍生的 3D-TESM 可能需要长达 6 个月的时间,从而降低了通量。
在这里,我们通过结合 3D-TESM 和 shRNA 技术,开发了一种疾病建模策略,可在 1 周内诱导单个 hiPSC 衍生的肌原性祖细胞系中出现不同的遗传缺陷。
作为原理验证,我们分别 recapitulated 杜氏肌营养不良症和肢带型肌营养不良症 2A 相关的病理学,这两种疾病分别是由 DMD 和 CAPN3 的功能丧失引起的。shRNA 介导的 DMD 或 CAPN3 敲低导致收缩功能丧失、组织架构破坏和疾病特异性蛋白质组。使用微肌营养不良蛋白的候选基因治疗治疗可部分挽救 DMD 缺陷型 3D-TESM 中的病理学,其疗效与动物模型相当。
这些结果表明,基于 shRNA 的同基因人类化 3D-TESM 模型提供了一种快速、廉价且高效的工具来模拟肌肉疾病,并且可用于新型治疗方法的临床前评估。