Alqadhi Saeed, Bindajam Ahmed Ali, Mallick Javed, Talukdar Swapan, Rahman Atiqur
Department of Civil Engineering, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia.
Department of Architecture and Planning, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia.
Heliyon. 2024 Feb 14;10(4):e25731. doi: 10.1016/j.heliyon.2024.e25731. eCollection 2024 Feb 29.
This study aims to quantitatively and qualitatively assess the impact of urbanisation on the urban ecosystem in the city of Abha, Saudi Arabia, by analysing land use changes, urbanisation processes and their ecological impacts. Using a multidisciplinary approach, a novel remote sensing-based urban ecological condition index (RSUSEI) will be developed and applied to assess the ecological status of urban surfaces. Therefore, the identification and quantification of urbanisation is important. To do so, we used hyper-tuned artificial neural network (ANN) as well as Land Cover Change Rate (LCCR), Land Cover Index (LCI) and Landscape Expansion Index (LEI). For the development of (RSUSEI), we have used four advanced models such as fuzzy Logic, Principle Component Analysis (PCA), Analytical Hierarchy Process (AHP) and fuzzy Analytical Hierarchy Process (FAHP) to integrate various ecological parameters. In order to obtain more information for better decision making in urban planning, sensitivity and uncertainty analyses based on a deep neural network (DNN) were also used. The results of the study show a multi-layered pattern of urbanisation in Saudi Arabian cities reflected in the LCCR, indicating rapid urban expansion, especially in the built-up areas with an LCCR of 0.112 over the 30-year period, corresponding to a more than four-fold increase in urban land cover. At the same time, the LCI shows a remarkable increase in 'built-up' areas from 3.217% to 13.982%, reflecting the substantial conversion of other land cover types to urban uses. Furthermore, the LEI emphasises the complexity of urban growth. Outward expansion (118.98 km), Edge-Expansion (95.22 km) and Infilling (5.00 km) together paint a picture of a city expanding outwards while filling gaps in the existing urban fabric. The RSUSEI model shows that the zone of extremely poor ecological condition covers an area of 157-250 km, while the natural zone covers 91-410 km. The DNN based sensitivity analysis is useful to determine the optimal model, while the integrated models have lower input parameter uncertainty than other models. The results of the study have significant implications for the management of urban ecosystems in arid areas and the protection of natural habitats while improving the quality of life of urban residents. The RSUSEI model can be used effectively to assess urban surface ecology and inform urban management techniques.
本研究旨在通过分析土地利用变化、城市化进程及其生态影响,定量和定性评估沙特阿拉伯阿卜哈市城市化对城市生态系统的影响。采用多学科方法,将开发一种基于遥感的新型城市生态状况指数(RSUSEI)并应用于评估城市地表的生态状况。因此,城市化的识别和量化很重要。为此,我们使用了超调谐人工神经网络(ANN)以及土地覆盖变化率(LCCR)、土地覆盖指数(LCI)和景观扩展指数(LEI)。为了开发(RSUSEI),我们使用了模糊逻辑、主成分分析(PCA)、层次分析法(AHP)和模糊层次分析法(FAHP)这四种先进模型来整合各种生态参数。为了在城市规划中获得更多信息以做出更好的决策,还使用了基于深度神经网络(DNN)的敏感性和不确定性分析。研究结果显示,沙特阿拉伯城市的城市化呈现出多层次模式,这在LCCR中有所体现,表明城市快速扩张,特别是在建成区,30年间LCCR为0.112,相当于城市土地覆盖增加了四倍多。同时,LCI显示“建成区”面积从3.217%显著增加到13.982%,反映了其他土地覆盖类型大量转变为城市用途。此外,LEI强调了城市增长的复杂性。向外扩张(118.98公里)、边缘扩张(95.22公里)和填充(5.00公里)共同描绘了一个城市向外扩张同时填补现有城市结构中空白的景象。RSUSEI模型显示,生态状况极差的区域面积为157 - 250平方公里,而自然区域面积为91 - 410平方公里。基于DNN的敏感性分析有助于确定最优模型,而综合模型的输入参数不确定性比其他模型更低。研究结果对干旱地区城市生态系统的管理、自然栖息地的保护以及改善城市居民生活质量具有重要意义。RSUSEI模型可有效用于评估城市地表生态并为城市管理技术提供参考。