Sredojević Dušan N, Vukoje Ivana, Trpkov Đorđe, Brothers Edward N
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia.
Gaussian, Inc., Wallingford, Connecticut, USA.
Phys Chem Chem Phys. 2024 Mar 6;26(10):8356-8365. doi: 10.1039/d3cp06186h.
In addition to providing a sustainable route to green alternative energy and chemical supplies from a cheap and abundant carbon source, recycling CO offers an excellent way to reduce net anthropogenic global CO emissions. This can be achieved catalysis on 2D materials. These materials are atomically thin and have unique electrical and catalytic properties compared to bigger nanoparticles and conventional bulk catalysts, opening a new arena in catalysis. This paper examines the efficacy of hexagonal boron nitride (h-BN) lattices with vacancy defects for CO electroreduction (CORR). We conducted in-depth investigations on different CORR electrocatalytic reaction pathways on various h-BN vacancy sites using a computational hydrogen model (CHE). It was shown that CO binds to h-BN vacancies sufficiently to ensure additional electron transfer processes, leading to higher-order reduction products. For mono-atomic defects (removed nitrogen), the electrochemical path of (H + e) pair transfers that would lead to the formation of methanol is most favorable with a limiting potential of 1.21 V. In contrast, the reaction pathways (removed boron) imposes much higher thermodynamic barriers for the formation of all relevant species. With a divacancy , the hydrogen evolution reaction (HER) would be the most probable process due to the low rate-determining barrier of 0.69 eV. On the tetravacancy defects the pathways toward the formation of both CH and CHOH impose a limiting potential of 0.85 V. At the same time, the HER is suppressed by requiring much higher energy (2.15 eV). Modeling the edges of h-BN reveals that N-terminated zigzag conformation would impose the same limiting potential for the formation of methanol and methane (1.73 V), simultaneously suppressing the HER (3.47 V). At variance, the armchair conformation favors the HER, with a rate-determining barrier of 1.70 eV. Hence, according to our calculations, and are the most appropriate vacancy defects for catalyzing CO electroreduction reactions.
除了提供一条从廉价且丰富的碳源获取绿色替代能源和化学供应的可持续途径外,回收一氧化碳还为减少人为全球净一氧化碳排放提供了一个绝佳方法。这可以通过二维材料上的催化作用来实现。这些材料原子级薄,与较大的纳米颗粒和传统块状催化剂相比具有独特的电学和催化性能,为催化领域开辟了一个新的天地。本文研究了具有空位缺陷的六方氮化硼(h-BN)晶格用于一氧化碳电还原(CORR)的效能。我们使用计算氢模型(CHE)对各种h-BN空位位点上不同的CORR电催化反应途径进行了深入研究。结果表明,一氧化碳与h-BN空位充分结合,以确保额外的电子转移过程,从而产生高阶还原产物。对于单原子缺陷(去除氮),导致甲醇形成的(H + e)对转移的电化学路径最有利,极限电位为1.21 V。相比之下,(去除硼)的反应路径对所有相关物种的形成施加了更高的热力学势垒。对于双空位,由于低速率决定势垒为0.69 eV,析氢反应(HER)将是最可能的过程。在四空位缺陷上,形成CH和CHOH的途径施加了0.85 V的极限电位。同时,析氢反应通过需要更高的能量(2.15 eV)而受到抑制。对h-BN边缘的建模表明,N端锯齿形构象对甲醇和甲烷的形成将施加相同的极限电位(1.73 V),同时抑制析氢反应(3.47 V)。不同的是,扶手椅形构象有利于析氢反应,速率决定势垒为1.70 eV。因此,根据我们的计算,单原子缺陷和双空位是催化一氧化碳电还原反应最合适的空位缺陷。