From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.), Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T., G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada; and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S., L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research Institute, Toronto, Canada.
Radiol Imaging Cancer. 2024 Mar;6(2):e230029. doi: 10.1148/rycan.230029.
Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences ( < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 © RSNA, 2024.
目的:探究头颈部鳞癌(HNSCC)患者放疗第 1 周后获取的定量超声(QUS)放射组学数据在预测治疗反应中的作用。
材料与方法:本前瞻性研究纳入 55 例接受根治性放疗的大块淋巴结阳性 HNSCC 患者(完全缓解组 21 例[中位年龄 65 岁{四分位距(IQR):47-80 岁},20 例男性,1 例女性;不完全缓解组 34 例[中位年龄 59 岁{IQR:39-79 岁},33 例男性,1 例女性])。所有患者接受 70 Gy 照射,分 33-35 次,6-7 周完成。患者在放疗前及放疗第 1 周后接受转移性淋巴结超声射频数据采集。QUS 分析产生 5 个频谱图,提取平均值。我们应用灰度共生矩阵技术进行纹理分析,得出 20 个 QUS 纹理和 80 个纹理衍生参数。以放疗后 3 个月的反应作为终点。采用嵌套留一交叉验证进行模型构建和评估。
结果:5 个Δ(Δ)参数差异有统计学意义(<.05)。支持向量机分类器在测试集中的灵敏度为 71%(21 例中有 15 例),特异性为 76%(34 例中有 26 例),平衡准确率为 74%,受试者工作特征曲线下面积为 0.77。对于所有分类器,治疗第 1 周后性能均有所提高。
结论:HNSCC 患者放疗第 1 周后获取的 QUS Δ-放射组学模型可较准确预测治疗结束后 3 个月的反应。计算机辅助诊断(CAD)、超声、放射治疗学/肿瘤学、头颈部、放射组学、定量超声、放疗、头颈部鳞状细胞癌、机器学习。临床试验注册号:NCT03908684。
© 2024 RSNA。
Clin Transl Radiat Oncol. 2021-3-12
Int J Radiat Oncol Biol Phys. 2024-1-1
Cochrane Database Syst Rev. 2022-5-20
Cancers (Basel). 2021-5-4
Am Soc Clin Oncol Educ Book. 2021-3
Clin Transl Radiat Oncol. 2021-3-12