文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定量超声 Delta 放射组学预测头颈部鳞状细胞癌患者的放疗反应。

Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma.

机构信息

From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.), Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N 3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T., G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada; and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S., L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research Institute, Toronto, Canada.

出版信息

Radiol Imaging Cancer. 2024 Mar;6(2):e230029. doi: 10.1148/rycan.230029.


DOI:10.1148/rycan.230029
PMID:38391311
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10988345/
Abstract

Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences ( < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 © RSNA, 2024.

摘要

目的:探究头颈部鳞癌(HNSCC)患者放疗第 1 周后获取的定量超声(QUS)放射组学数据在预测治疗反应中的作用。

材料与方法:本前瞻性研究纳入 55 例接受根治性放疗的大块淋巴结阳性 HNSCC 患者(完全缓解组 21 例[中位年龄 65 岁{四分位距(IQR):47-80 岁},20 例男性,1 例女性;不完全缓解组 34 例[中位年龄 59 岁{IQR:39-79 岁},33 例男性,1 例女性])。所有患者接受 70 Gy 照射,分 33-35 次,6-7 周完成。患者在放疗前及放疗第 1 周后接受转移性淋巴结超声射频数据采集。QUS 分析产生 5 个频谱图,提取平均值。我们应用灰度共生矩阵技术进行纹理分析,得出 20 个 QUS 纹理和 80 个纹理衍生参数。以放疗后 3 个月的反应作为终点。采用嵌套留一交叉验证进行模型构建和评估。

结果:5 个Δ(Δ)参数差异有统计学意义(<.05)。支持向量机分类器在测试集中的灵敏度为 71%(21 例中有 15 例),特异性为 76%(34 例中有 26 例),平衡准确率为 74%,受试者工作特征曲线下面积为 0.77。对于所有分类器,治疗第 1 周后性能均有所提高。

结论:HNSCC 患者放疗第 1 周后获取的 QUS Δ-放射组学模型可较准确预测治疗结束后 3 个月的反应。计算机辅助诊断(CAD)、超声、放射治疗学/肿瘤学、头颈部、放射组学、定量超声、放疗、头颈部鳞状细胞癌、机器学习。临床试验注册号:NCT03908684。

© 2024 RSNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a5a/10988345/89b6cffe2eb1/rycan.230029.VA.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a5a/10988345/89b6cffe2eb1/rycan.230029.VA.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a5a/10988345/89b6cffe2eb1/rycan.230029.VA.jpg

相似文献

[1]
Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma.

Radiol Imaging Cancer. 2024-3

[2]
Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma.

Clin Transl Radiat Oncol. 2021-3-12

[3]
Quantitative ultrasound radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma treated with radical radiotherapy.

Cancer Med. 2021-4

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Radiomics-based prediction of recurrence for head and neck cancer patients using data imbalanced correction.

Comput Biol Med. 2024-9

[6]
MRI-based texture analysis for the evaluation of the response to neoadjuvant chemoimmunotherapy in locally advanced head and neck squamous cell carcinoma.

BMC Med Imaging. 2025-7-15

[7]
HYPORT: Phase 1 Study of 3-Week Hypofractionated Postoperative Radiation Therapy for Head and Neck Squamous Cell Carcinoma.

Int J Radiat Oncol Biol Phys. 2024-1-1

[8]
3-year overall survival benefit of systematic follow-up with 18F-FDG PET/CT in asymptomatic patients treated for head and neck squamous cell carcinoma: a multicenter study.

Eur J Nucl Med Mol Imaging. 2025-2-26

[9]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

引用本文的文献

[1]
Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Research (Wash D C). 2025-6-24

本文引用的文献

[1]
3D Harmonic and Subharmonic Imaging for Characterizing Breast Lesions: A Multi-Center Clinical Trial.

J Ultrasound Med. 2022-7

[2]
De-Escalation Strategies of (Chemo)Radiation for Head-and-Neck Squamous Cell Cancers-HPV and Beyond.

Cancers (Basel). 2021-5-4

[3]
Artificial Intelligence and Radiomics in Head and Neck Cancer Care: Opportunities, Mechanics, and Challenges.

Am Soc Clin Oncol Educ Book. 2021-3

[4]
Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma.

Clin Transl Radiat Oncol. 2021-3-12

[5]
Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics.

Sci Rep. 2021-3-17

[6]
prediction of response in multicentre locally advanced breast cancer (LABC) patients using quantitative ultrasound and derivative texture methods.

Oncotarget. 2021-1-19

[7]
Comparison of methods for texture analysis of QUS parametric images in the characterization of breast lesions.

PLoS One. 2020-12-31

[8]
Quantitative ultrasound radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma treated with radical radiotherapy.

Cancer Med. 2021-4

[9]
Quantitative ultrasound delta-radiomics during radiotherapy for monitoring treatment responses in head and neck malignancies.

Future Sci OA. 2020-9-4

[10]
Quantitative ultrasound radiomics using texture derivatives in prediction of treatment response to neo-adjuvant chemotherapy for locally advanced breast cancer.

Oncotarget. 2020-10-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索