Department of Radiation Oncology, Sunnybrook Health Sciences Centre, T2 167, 2075 Bayview Avenue, Toronto, ON, M4N3M5, Canada.
Department of Radiation Oncology, University of Toronto, Toronto, Canada.
Sci Rep. 2021 Mar 17;11(1):6117. doi: 10.1038/s41598-021-85221-6.
To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.
探讨定量超声(QUS)放射组学在接受根治性放疗(RT)的头颈部鳞状细胞癌(HNSCC)患者中预测治疗反应的作用。在治疗前从索引淋巴结中提取了 5 个光谱参数、20 个纹理和 80 个纹理导数特征。最初在 3 个月时进行反应评估,完全缓解者标记为早期缓解者(ER)。有残留疾病的患者继续随访,将其分类为晚期缓解者(LR)或持续性/进展性疾病患者(PD)。使用留一交叉验证的机器学习分类器开发了一个二元反应预测放射组学模型。共有 59 名患者纳入研究(22 名 ER,29 名 LR,8 名 PD)。支持向量机(SVM)分类器表现最佳,其准确性和曲线下面积(AUC)分别为 92%和 0.91,用于定义 3 个月时的反应(ER 与 LR/PD)。使用 SVM 模型预测的 ER、LR、PD 的 2 年无复发生存率分别为 91%、78%和 27%(p<0.01)。HNSCC 中使用纹理导数的预处理 QUS-放射组学可以预测 RT 的反应,准确率超过 90%,对生存有很强的影响。临床试验注册:clinicaltrials.gov.in 标识符 NCT03908684。
Clin Transl Radiat Oncol. 2021-3-12
BMC Cancer. 2024-5-3
Cancers (Basel). 2022-12-16
Cancers Head Neck. 2020-1-9
N Engl J Med. 2020-1-2