文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于治疗前定量超声放射组学评估头颈部鳞状细胞癌患者的临床放射敏感性。

Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics.

机构信息

Department of Radiation Oncology, Sunnybrook Health Sciences Centre, T2 167, 2075 Bayview Avenue, Toronto, ON, M4N3M5, Canada.

Department of Radiation Oncology, University of Toronto, Toronto, Canada.

出版信息

Sci Rep. 2021 Mar 17;11(1):6117. doi: 10.1038/s41598-021-85221-6.


DOI:10.1038/s41598-021-85221-6
PMID:33731738
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7969626/
Abstract

To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER). Patients with residual disease were followed to classify them as either late responders (LR) or patients with persistent/progressive disease (PD). Machine learning classifiers with leave-one-out cross-validation was used for the development of a binary response-prediction radiomics model. A total of 59 patients were included in the study (22 ER, 29 LR, and 8 PD). A support vector machine (SVM) classifier led to the best performance with accuracy and area under curve (AUC) of 92% and 0.91, responsively to define the response at 3 months (ER vs. LR/PD). The 2-year recurrence-free survival for predicted-ER, LR, PD using an SVM-model was 91%, 78%, and 27%, respectively (p < 0.01). Pretreatment QUS-radiomics using texture derivatives in HNSCC can predict the response to RT with an accuracy of more than 90% with a strong influence on the survival.Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.

摘要

探讨定量超声(QUS)放射组学在接受根治性放疗(RT)的头颈部鳞状细胞癌(HNSCC)患者中预测治疗反应的作用。在治疗前从索引淋巴结中提取了 5 个光谱参数、20 个纹理和 80 个纹理导数特征。最初在 3 个月时进行反应评估,完全缓解者标记为早期缓解者(ER)。有残留疾病的患者继续随访,将其分类为晚期缓解者(LR)或持续性/进展性疾病患者(PD)。使用留一交叉验证的机器学习分类器开发了一个二元反应预测放射组学模型。共有 59 名患者纳入研究(22 名 ER,29 名 LR,8 名 PD)。支持向量机(SVM)分类器表现最佳,其准确性和曲线下面积(AUC)分别为 92%和 0.91,用于定义 3 个月时的反应(ER 与 LR/PD)。使用 SVM 模型预测的 ER、LR、PD 的 2 年无复发生存率分别为 91%、78%和 27%(p<0.01)。HNSCC 中使用纹理导数的预处理 QUS-放射组学可以预测 RT 的反应,准确率超过 90%,对生存有很强的影响。临床试验注册:clinicaltrials.gov.in 标识符 NCT03908684。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/bd3ad9b58e0b/41598_2021_85221_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/441f4e636b31/41598_2021_85221_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/ff790be7fffb/41598_2021_85221_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/2a59b7835a83/41598_2021_85221_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/6f963300175c/41598_2021_85221_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/bd3ad9b58e0b/41598_2021_85221_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/441f4e636b31/41598_2021_85221_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/ff790be7fffb/41598_2021_85221_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/2a59b7835a83/41598_2021_85221_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/6f963300175c/41598_2021_85221_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc3/7969626/bd3ad9b58e0b/41598_2021_85221_Fig5_HTML.jpg

相似文献

[1]
Assessment of clinical radiosensitivity in patients with head-neck squamous cell carcinoma from pre-treatment quantitative ultrasound radiomics.

Sci Rep. 2021-3-17

[2]
Quantitative ultrasound radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma treated with radical radiotherapy.

Cancer Med. 2021-4

[3]
Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma.

Radiol Imaging Cancer. 2024-3

[4]
Ultrasound delta-radiomics during radiotherapy to predict recurrence in patients with head and neck squamous cell carcinoma.

Clin Transl Radiat Oncol. 2021-3-12

[5]
A multi-objective radiomics model for the prediction of locoregional recurrence in head and neck squamous cell cancer.

Med Phys. 2020-10

[6]
Application of contrast-enhanced CT radiomics in prediction of early recurrence of locally advanced oesophageal squamous cell carcinoma after trimodal therapy.

Cancer Imaging. 2021-5-26

[7]
Utility of adding Radiomics to clinical features in predicting the outcomes of radiotherapy for head and neck cancer using machine learning.

PLoS One. 2022

[8]
Predicting head and neck cancer treatment outcomes with pre-treatment quantitative ultrasound texture features and optimising machine learning classifiers with texture-of-texture features.

Front Oncol. 2023-10-2

[9]
Computed tomography-derived radiomic signature of head and neck squamous cell carcinoma (peri)tumoral tissue for the prediction of locoregional recurrence and distant metastasis after concurrent chemo-radiotherapy.

PLoS One. 2020-5-22

[10]
Radiomics in predicting recurrence for patients with locally advanced breast cancer using quantitative ultrasound.

Oncotarget. 2021-12-7

引用本文的文献

[1]
Feature level quantitative ultrasound and CT information fusion to predict the outcome of head & neck cancer radiotherapy treatment: Enhanced principal component analysis.

Med Phys. 2025-9

[2]
Tumor monitoring and detection of lymph node metastasis using quantitative ultrasound and immune cytokine profiling in dogs undergoing radiation therapy: a pilot study.

ArXiv. 2025-3-25

[3]
Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung.

Sci Rep. 2024-10-16

[4]
Advances in personalized radiotherapy.

BMC Cancer. 2024-5-3

[5]
The Use of Artificial Intelligence in Head and Neck Cancers: A Multidisciplinary Survey.

J Pers Med. 2024-3-25

[6]
Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma.

Radiol Imaging Cancer. 2024-3

[7]
Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging.

Cancers (Basel). 2022-12-16

[8]
Early Changes in Quantitative Ultrasound Imaging Parameters during Neoadjuvant Chemotherapy to Predict Recurrence in Patients with Locally Advanced Breast Cancer.

Cancers (Basel). 2022-2-28

[9]
Application of Machine Learning Methods to Improve the Performance of Ultrasound in Head and Neck Oncology: A Literature Review.

Cancers (Basel). 2022-1-28

本文引用的文献

[1]
Quantitative ultrasound delta-radiomics during radiotherapy for monitoring treatment responses in head and neck malignancies.

Future Sci OA. 2020-9-4

[2]
Quantitative ultrasound radiomics using texture derivatives in prediction of treatment response to neo-adjuvant chemotherapy for locally advanced breast cancer.

Oncotarget. 2020-10-20

[3]
Quantitative ultrasound radiomics for therapy response monitoring in patients with locally advanced breast cancer: Multi-institutional study results.

PLoS One. 2020-7-27

[4]
Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi-institutional study.

Cancer Med. 2020-8

[5]
Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas.

Cancers Head Neck. 2020-5-4

[6]
Quantitative Ultrasound Monitoring of Breast Tumour Response to Neoadjuvant Chemotherapy: Comparison of Results Among Clinical Scanners.

Ultrasound Med Biol. 2020-5

[7]
Adaptive radiotherapy for head and neck cancer.

Cancers Head Neck. 2020-1-9

[8]
Predictive quantitative ultrasound radiomic markers associated with treatment response in head and neck cancer.

Future Sci OA. 2019-11-26

[9]
Head and Neck Cancer.

N Engl J Med. 2020-1-2

[10]
Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma.

J Clin Oncol. 2020-4-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索