Suppr超能文献

基于海洋捕食者算法的并网光伏系统低电压穿越能力增强优化PI控制器

Marine Predator Algorithm-Based Optimal PI Controllers for LVRT Capability Enhancement of Grid-Connected PV Systems.

作者信息

Ellithy Hazem Hassan, Hasanien Hany M, Alharbi Mohammed, Sobhy Mohamed A, Taha Adel M, Attia Mahmoud A

机构信息

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt.

Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt.

出版信息

Biomimetics (Basel). 2024 Jan 23;9(2):66. doi: 10.3390/biomimetics9020066.

Abstract

Photovoltaic (PV) systems are becoming essential to our energy landscape as renewable energy sources become more widely integrated into power networks. Preserving grid stability, especially during voltage sags, is one of the significant difficulties confronting the implementation of these technologies. This attribute is referred to as low-voltage ride-through (LVRT). To overcome this issue, adopting a Proportional-Integral (PI) controller, a control system standard, is proving to be an efficient solution. This paper provides a unique algorithm-based approach of the Marine Predator Algorithm (MPA) for optimized tuning of the used PI controller, mainly focusing on inverter control, to improve the LVRT of the grid, leading to improvements in the overshoot, undershoot, settling time, and steady-state response of the system. The fitness function is optimized using the MPA to determine the settings of the PI controller. This process helps to optimally design the controllers optimally, thus improving the inverter control and performance and enhancing the system's LVRT capability. The methodology is tested in case of a 3L-G fault. To test its validity, the proposed approach is compared with rival standard optimization-based PI controllers, namely Grey Wolf Optimization and Particle Swarm Optimization. The comparison shows that the used algorithm provides better results with a higher convergence rate with overshoot ranging from 14% to 40% less in the case of DC-Link Voltage and active power and also settling times in the case of MPA being less than PSO and GWO by 0.76 to 0.95 s.

摘要

随着可再生能源更广泛地融入电网,光伏(PV)系统正成为我们能源格局的重要组成部分。保持电网稳定性,尤其是在电压骤降期间,是这些技术实施面临的重大困难之一。这一特性被称为低电压穿越(LVRT)。为克服这一问题,采用比例积分(PI)控制器(一种控制系统标准)被证明是一种有效的解决方案。本文提出了一种基于独特算法的海洋捕食者算法(MPA),用于对所使用的PI控制器进行优化调整,主要聚焦于逆变器控制,以提高电网的LVRT,从而改善系统的超调量、欠调量、调节时间和稳态响应。利用MPA对适应度函数进行优化,以确定PI控制器的设置。这一过程有助于优化设计控制器,进而改善逆变器控制和性能,并增强系统的LVRT能力。该方法在三电平接地故障情况下进行了测试。为验证其有效性,将所提方法与基于标准优化的竞争PI控制器(即灰狼优化算法和粒子群优化算法)进行了比较。比较结果表明,所使用的算法能提供更好的结果,收敛速度更快,在直流母线电压和有功功率方面,超调量减少14%至40%,并且在调节时间方面,MPA比粒子群优化算法和灰狼优化算法少0.76至0.95秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1c0/10887426/efe1bc8c5b3c/biomimetics-09-00066-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验