Alvarez-Estrada Ramon F
Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Entropy (Basel). 2024 Jan 24;26(2):104. doi: 10.3390/e26020104.
The quantum Wigner function and non-equilibrium equation for a microscopic particle in one spatial dimension (1D) subject to a potential and a heat bath at thermal equilibrium are considered by non-trivially extending a previous analysis. The non-equilibrium equation yields a general hierarchy for suitable non-equilibrium moments. A new non-trivial solution of the hierarchy combining the continued fractions and infinite series thereof is obtained and analyzed. In a short thermal wavelength regime (keeping quantum features adequate for chemical reactions), the hierarchy is approximated by a three-term one. For long times, in turn, the three-term hierarchy is replaced by a Smoluchovski equation. By extending that 1D analysis, a new model of the growth (polymerization) of a molecular chain (template or te) by binding an individual unit (an atom) and activation by a catalyst is developed in three spatial dimensions (3D). The atom, te, and catalyst move randomly as solutions in a fluid at rest in thermal equilibrium. Classical statistical mechanics describe the te and catalyst approximately. Atoms and bindings are treated quantum-mechanically. A mixed non-equilibrium quantum-classical Wigner-Liouville function and dynamical equations for the atom and for the te and catalyst, respectively, are employed. By integrating over the degrees of freedom of te and with the catalyst assumed to be near equilibrium, an approximate Smoluchowski equation is obtained for the unit. The mean first passage time (MFPT) for the atom to become bound to the te, facilitated by the catalyst, is considered. The resulting MFPT is consistent with the Arrhenius formula for rate constants in chemical reactions.
通过非平凡地扩展先前的分析,考虑了一维(1D)微观粒子在势场和处于热平衡的热浴作用下的量子维格纳函数和非平衡方程。该非平衡方程产生了适用于合适非平衡矩的一般层次结构。得到并分析了结合连分数及其无穷级数的层次结构的一个新的非平凡解。在短热波长 regime(保持量子特征足以进行化学反应)下,该层次结构由三项层次结构近似。反过来,对于长时间,三项层次结构被Smoluchovski方程取代。通过扩展该一维分析,在三维(3D)中开发了一种通过结合单个单元(一个原子)并由催化剂激活来生长(聚合)分子链(模板或te)的新模型。原子、te和催化剂在热平衡的静止流体中作为溶液随机移动。经典统计力学近似地描述te和催化剂。原子和键合用量子力学处理。分别采用混合的非平衡量子 - 经典维格纳 - 刘维尔函数以及原子、te和催化剂的动力学方程。通过对te的自由度进行积分并假设催化剂接近平衡,得到了该单元的近似Smoluchowski方程。考虑了在催化剂促进下原子与te结合的平均首次通过时间(MFPT)。得到的MFPT与化学反应速率常数的阿仑尼乌斯公式一致。