文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects.

作者信息

Wei Mohan, Zhang Yaozhong, Wang Yifan, Liu Xiaoping, Li Xiaoliang, Zheng Xing

机构信息

State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China.

Yulin Coal Chemical Waste Resource Utilization and Low Carbon Environmental Protection Engineering Technology Research Center, Yulin High-tech Zone Yuheng No. 1 Industrial Sewage Treatment Co., Ltd., Yulin 719000, China.

出版信息

Membranes (Basel). 2024 Jan 27;14(2):35. doi: 10.3390/membranes14020035.


DOI:10.3390/membranes14020035
PMID:38392662
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10890076/
Abstract

Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/01fde0a02085/membranes-14-00035-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/f76d9d64b01c/membranes-14-00035-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/f973fa46f849/membranes-14-00035-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/0df77431be49/membranes-14-00035-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/73b0328e4cdf/membranes-14-00035-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/56436304bf1c/membranes-14-00035-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/44881e4c2046/membranes-14-00035-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/7a367b90e810/membranes-14-00035-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/9093ad5d790e/membranes-14-00035-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/01fde0a02085/membranes-14-00035-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/f76d9d64b01c/membranes-14-00035-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/f973fa46f849/membranes-14-00035-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/0df77431be49/membranes-14-00035-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/73b0328e4cdf/membranes-14-00035-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/56436304bf1c/membranes-14-00035-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/44881e4c2046/membranes-14-00035-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/7a367b90e810/membranes-14-00035-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/9093ad5d790e/membranes-14-00035-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523d/10890076/01fde0a02085/membranes-14-00035-g009.jpg

相似文献

[1]
Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects.

Membranes (Basel). 2024-1-27

[2]
Ionic fluid as a novel cleaning agent for the control of irreversible fouling in reverse osmosis membrane processes.

Water Res. 2022-10-1

[3]
Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives.

Adv Colloid Interface Sci. 2024-6

[4]
Novel insights into membrane fouling in a membrane bioreactor: Elucidating interfacial interactions with real membrane surface.

Chemosphere. 2018-7-18

[5]
[Application of atomic force microscopy (AFM) to study bacterial biofilms].

Sheng Wu Gong Cheng Xue Bao. 2017-9-25

[6]
Affinity of functional groups for membrane surfaces: implications for physically irreversible fouling.

Environ Sci Technol. 2008-7-15

[7]
Characterization of permanent fouling on the surfaces of UV lamps used for wastewater disinfection.

Water Environ Res. 2005

[8]
Fatty acid fouling of reverse osmosis membranes: implications for wastewater reclamation.

Water Res. 2008-10

[9]
In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance.

Environ Sci Technol. 2013-10-16

[10]
Friction Determination by Atomic Force Microscopy in Field of Biochemical Science.

Micromachines (Basel). 2018-6-21

引用本文的文献

[1]
Transformative insights in breast cancer: review of atomic force microscopy applications.

Discov Oncol. 2025-2-28

本文引用的文献

[1]
Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy.

Int J Biol Macromol. 2023-12-1

[2]
Protein dynamics by the combination of high-speed AFM and computational modeling.

Curr Opin Struct Biol. 2023-6

[3]
Influence of microplastics on the transport of antibiotics in sand filtration investigated by AFM force spectroscopy.

Sci Total Environ. 2023-5-15

[4]
Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments.

Adv Colloid Interface Sci. 2023-2

[5]
How and why does time matter - A comparison of fouling caused by organic substances on membranes over adsorption durations.

Sci Total Environ. 2023-3-25

[6]
Efficient capture of endocrine-disrupting compounds by a high-performance nanofiltration membrane for wastewater treatment.

Water Res. 2022-12-1

[7]
Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy.

Prog Biophys Mol Biol. 2022-12

[8]
Gelation behavior and mechanism of alginate with calcium: Dependence on monovalent counterions.

Carbohydr Polym. 2022-10-15

[9]
Optimization of tip-enhanced Raman spectroscopy for probing the chemical structure of DNA.

Spectrochim Acta A Mol Biomol Spectrosc. 2022-11-15

[10]
Identification of microplastics and associated contaminants using ultra high resolution microscopic and spectroscopic techniques.

Sci Total Environ. 2022-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索