Ben Arbia Marwa, Helal Hicham, Comini Elisabetta
Sensor Lab, Department of Information Engineering, University of Brescia, Via Valotti 9, 25133 Brescia, Italy.
Nanomaterials (Basel). 2024 Feb 14;14(4):359. doi: 10.3390/nano14040359.
Low-dimensional metal oxides have drawn significant attention across various scientific domains due to their multifaceted applications, particularly in the field of environment monitoring. Their popularity is attributed to a constellation of unique properties, including their high surface area, robust chemical stability, and remarkable electrical conductivity, among others, which allow them to be a good candidate for detecting CO, CO, H, NH, NO, CH, HS, and volatile organic compound gases. In recent years, the Sol-Gel method has emerged as a powerful and versatile technique for the controlled synthesis of low-dimensional metal oxide materials with diverse morphologies tailored for gas sensing applications. This review delves into the manifold facets of the Sol-Gel processing of metal oxides and reports their derived morphologies and remarkable gas-sensing properties. We comprehensively examine the synthesis conditions and critical parameters governing the formation of distinct morphologies, including nanoparticles, nanowires, nanorods, and hierarchical nanostructures. Furthermore, we provide insights into the fundamental principles underpinning the gas-sensing mechanisms of these materials. Notably, we assess the influence of morphology on gas-sensing performance, highlighting the pivotal role it plays in achieving exceptional sensitivity, selectivity, and response kinetics. Additionally, we highlight the impact of doping and composite formation on improving the sensitivity of pure metal oxides and reducing their operation temperature. A discussion of recent advances and emerging trends in the field is also presented, shedding light on the potential of Sol-Gel-derived nanostructures to revolutionize the landscape of gas sensing technologies.
低维金属氧化物因其多方面的应用,特别是在环境监测领域,在各个科学领域引起了广泛关注。它们之所以受到青睐,是因为具有一系列独特的性质,包括高比表面积、强大的化学稳定性和卓越的导电性等,这些特性使其成为检测一氧化碳、二氧化碳、氢气、氨气、一氧化氮、甲烷、硫化氢和挥发性有机化合物气体的理想候选材料。近年来,溶胶-凝胶法已成为一种强大且通用的技术,用于可控合成具有多种形态的低维金属氧化物材料,这些形态是为气体传感应用量身定制的。本文综述深入探讨了金属氧化物溶胶-凝胶工艺的多个方面,并报告了其衍生的形态和显著气敏特性。我们全面研究了控制不同形态形成的合成条件和关键参数,包括纳米颗粒、纳米线、纳米棒和分级纳米结构。此外,我们深入了解了这些材料气敏机制的基本原理。值得注意的是,我们评估了形态对气敏性能的影响,强调了其在实现卓越灵敏度、选择性和响应动力学方面所起的关键作用。此外,我们突出了掺杂和复合形成对提高纯金属氧化物灵敏度和降低其工作温度的影响。本文还讨论了该领域的最新进展和新兴趋势,揭示了溶胶-凝胶衍生纳米结构在彻底改变气体传感技术格局方面的潜力。