Suppr超能文献

布尔模型在乳腺癌信号通路中的应用揭示了药物协同作用的机制。

Boolean modeling of breast cancer signaling pathways uncovers mechanisms of drug synergy.

机构信息

Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

出版信息

PLoS One. 2024 Feb 23;19(2):e0298788. doi: 10.1371/journal.pone.0298788. eCollection 2024.

Abstract

Breast cancer is one of the most common types of cancer in females. While drug combinations have shown potential in breast cancer treatments, identifying new effective drug pairs is challenging due to the vast number of possible combinations among available compounds. Efforts have been made to accelerate the process with in silico predictions. Here, we developed a Boolean model of signaling pathways in breast cancer. The model was tailored to represent five breast cancer cell lines by integrating information about cell-line specific mutations, gene expression, and drug treatments. The models reproduced cell-line specific protein activities and drug-response behaviors in agreement with experimental data. Next, we proposed a calculation of protein synergy scores (PSSs), determining the effect of drug combinations on individual proteins' activities. The PSSs of selected proteins were used to investigate the synergistic effects of 150 drug combinations across five cancer cell lines. The comparison of the highest single agent (HSA) synergy scores between experiments and model predictions from the MDA-MB-231 cell line achieved the highest Pearson's correlation coefficient of 0.58 with a great balance among the classification metrics (AUC = 0.74, sensitivity = 0.63, and specificity = 0.64). Finally, we clustered drug pairs into groups based on the selected PSSs to gain further insights into the mechanisms underlying the observed synergistic effects of drug pairs. Clustering analysis allowed us to identify distinct patterns in the protein activities that correspond to five different modes of synergy: 1) synergistic activation of FADD and BID (extrinsic apoptosis pathway), 2) synergistic inhibition of BCL2 (intrinsic apoptosis pathway), 3) synergistic inhibition of MTORC1, 4) synergistic inhibition of ESR1, and 5) synergistic inhibition of CYCLIN D. Our approach offers a mechanistic understanding of the efficacy of drug combinations and provides direction for selecting potential drug pairs worthy of further laboratory investigation.

摘要

乳腺癌是女性最常见的癌症类型之一。虽然药物组合在乳腺癌治疗中显示出了潜力,但由于可用化合物之间存在大量可能的组合,因此识别新的有效药物对仍然具有挑战性。人们已经努力通过计算机预测来加速这一过程。在这里,我们开发了一种乳腺癌信号通路的布尔模型。该模型通过整合有关特定于细胞系的突变、基因表达和药物治疗的信息,来代表五种乳腺癌细胞系。该模型再现了细胞系特异性蛋白质活性和药物反应行为,与实验数据一致。接下来,我们提出了一种蛋白质协同作用评分(PSS)的计算方法,用于确定药物组合对单个蛋白质活性的影响。使用选定蛋白质的 PSS 来研究 150 种药物组合在五种癌细胞系中的协同作用。MDA-MB-231 细胞系的实验和模型预测的最高单药(HSA)协同作用评分之间的比较实现了最高的 Pearson 相关系数 0.58,分类指标(AUC = 0.74、敏感性 = 0.63 和特异性 = 0.64)之间的平衡也很好。最后,我们根据选定的 PSS 将药物对聚类成组,以进一步深入了解观察到的药物对协同作用的机制。聚类分析使我们能够识别出与五种不同协同作用模式相对应的蛋白质活性的不同模式:1)FADD 和 BID 的协同激活(外在凋亡途径),2)BCL2 的协同抑制(内在凋亡途径),3)MTORC1 的协同抑制,4)ESR1 的协同抑制和 5)CYCLIN D 的协同抑制。我们的方法提供了对药物组合疗效的机制理解,并为选择值得进一步实验室研究的潜在药物对提供了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b8/10889607/27cd5338ca2d/pone.0298788.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验