Suppr超能文献

有效超连接网络构建与学习:在重度抑郁症识别中的应用。

Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification.

机构信息

Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.

School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, China.

出版信息

Comput Biol Med. 2024 Mar;171:108069. doi: 10.1016/j.compbiomed.2024.108069. Epub 2024 Feb 6.

Abstract

Functional connectivity (FC) derived from resting-state fMRI (rs-fMRI) is a primary approach for identifying brain diseases, but it is limited to capturing the pairwise correlation between regions-of-interest (ROIs) in the brain. Thus, hyper-connectivity which describes the higher-order relationship among multiple ROIs is receiving increasing attention. However, most hyper-connectivity methods overlook the directionality of connections. The direction of information flow constitutes a pivotal factor in shaping brain activity and cognitive processes. Neglecting this directional aspect can lead to an incomplete understanding of high-order interactions within the brain. To this end, we propose a novel effective hyper-connectivity (EHC) network that integrates direction detection and hyper-connectivity modeling. It characterizes the high-order directional information flow among multiple ROIs, providing a more comprehensive understanding of brain activity. Then, we develop a directed hypergraph convolutional network (DHGCN) to acquire deep representations from EHC network and functional indicators of ROIs. In contrast to conventional hypergraph convolutional networks designed for undirected hypergraphs, DHGCN is specifically tailored to handle directed hypergraph data structures. Moreover, unlike existing methods that primarily focus on fMRI time series, our proposed DHGCN model also incorporates multiple functional indicators, providing a robust framework for feature learning. Finally, deep representations generated via DHGCN, combined with demographic factors, are used for major depressive disorder (MDD) identification. Experimental results demonstrate that the proposed framework outperforms both FC and undirected hyper-connectivity models, as well as surpassing other state-of-the-art methods. The identification of EHC abnormalities through our framework can enhance the analysis of brain function in individuals with MDD.

摘要

功能连接(FC)来源于静息态功能磁共振成像(rs-fMRI),是识别大脑疾病的主要方法,但它仅限于捕捉大脑中感兴趣区域(ROIs)之间的两两相关关系。因此,描述多个 ROI 之间高阶关系的超连接受到越来越多的关注。然而,大多数超连接方法忽略了连接的方向性。信息流的方向是塑造大脑活动和认知过程的关键因素。忽略这个方向性方面可能会导致对大脑内部高阶相互作用的不完全理解。为此,我们提出了一种新的有效超连接(EHC)网络,该网络结合了方向检测和超连接建模。它描述了多个 ROI 之间的高阶方向信息流,提供了对大脑活动的更全面理解。然后,我们开发了一个有向超图卷积网络(DHGCN),从 EHC 网络和 ROI 的功能指标中获取深层表示。与针对无向超图设计的传统超图卷积网络不同,DHGCN 专门用于处理有向超图数据结构。此外,与主要关注 fMRI 时间序列的现有方法不同,我们提出的 DHGCN 模型还结合了多个功能指标,为特征学习提供了一个强大的框架。最后,通过 DHGCN 生成的深层表示,结合人口统计学因素,用于识别重度抑郁症(MDD)。实验结果表明,所提出的框架优于 FC 和无向超连接模型,并且优于其他最先进的方法。通过我们的框架识别 EHC 异常可以增强对 MDD 个体大脑功能的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验