Suppr超能文献

机器学习通过多中心 rs-fMRI 数据检测到的重度抑郁症患者脑功能连接网络的改变。

The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.

Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.

出版信息

Behav Brain Res. 2022 Oct 28;435:114058. doi: 10.1016/j.bbr.2022.114058. Epub 2022 Aug 20.

Abstract

BACKGROUND

The current diagnosis of major depressive disorder (MDD) is mainly based on the patient's self-report and clinical symptoms. Machine learning methods are used to identify MDD using resting-state functional magnetic resonance imaging (rs-fMRI) data. However, due to large site differences in multisite rs-fMRI data and the difficulty of sample collection, most of the current machine learning studies use small sample sizes of rs-fMRI datasets to detect the alterations of functional connectivity (FC) or network attribute (NA), which may affect the reliability of the experimental results.

METHODS

Multisite rs-fMRI data were used to increase the size of the sample, and then we extracted the functional connectivity (FC) and network attribute (NA) features from 1611 rs-fMRI data (832 patients with MDD (MDDs) and 779 healthy controls (HCs)). ComBat algorithm was used to harmonize the data variances caused by the multisite effect, and multivariate linear regression was used to remove age and sex covariates. Two-sample t-test and wrapper-based feature selection methods (support vector machine recursive feature elimination with cross-validation (SVM-RFECV) and LightGBM's "feature_importances_" function) were used to select important features. The Shapley additive explanations (SHAP) method was used to assign the contribution of features to the best classification effect model.

RESULTS

The best result was obtained from the LinearSVM model trained with the 136 important features selected by SVMRFE-CV. In the nested five-fold cross-validation (consisting of an outer and an inner loop of five-fold cross-validation) of 1611 data, the model achieved the accuracy, sensitivity, and specificity of 68.90 %, 71.75 %, and 65.84 %, respectively. The 136 important features were tested in a small dataset and obtained excellent classification results after balancing the ratio between patients with depression and HCs.

CONCLUSIONS

The combined use of FC and NA features is effective for classifying MDDs and HCs. The important FC and NA features extracted from the large sample dataset have some generalization performance and may be used as a reference for the altered brain functional connectivity networks in MDD.

摘要

背景

目前主要通过患者的自我报告和临床症状来诊断重度抑郁症(MDD)。机器学习方法被用于通过静息态功能磁共振成像(rs-fMRI)数据来识别 MDD。然而,由于多中心 rs-fMRI 数据的站点差异较大,以及样本采集的困难,目前大多数机器学习研究使用较小的 rs-fMRI 数据集样本量来检测功能连接(FC)或网络属性(NA)的改变,这可能会影响实验结果的可靠性。

方法

我们使用多中心 rs-fMRI 数据来增加样本量,然后从 1611 个 rs-fMRI 数据(832 名 MDD 患者(MDDs)和 779 名健康对照(HCs))中提取功能连接(FC)和网络属性(NA)特征。ComBat 算法用于协调多站点效应引起的数据方差,多元线性回归用于去除年龄和性别协变量。采用两样本 t 检验和基于包装的特征选择方法(支持向量机递归特征消除与交叉验证(SVM-RFECV)和 LightGBM 的“feature_importances_”函数)选择重要特征。Shapley 加性解释(SHAP)方法用于分配特征对最佳分类效果模型的贡献。

结果

在由 SVMRFE-CV 选择的 136 个重要特征训练的 LinearSVM 模型中,得到了最佳结果。在 1611 个数据的嵌套五重交叉验证(由外循环和内循环的五重交叉验证组成)中,模型的准确率、敏感度和特异性分别为 68.90%、71.75%和 65.84%。在小数据集上测试了 136 个重要特征,在平衡了抑郁患者和 HCs 之间的比例后,获得了出色的分类结果。

结论

联合使用 FC 和 NA 特征对 MDD 和 HCs 进行分类是有效的。从大样本数据集提取的重要 FC 和 NA 特征具有一定的泛化性能,可能作为 MDD 大脑功能连接网络改变的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验