Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 330, Santiago 8370146, Chile.
Int J Mol Sci. 2024 Feb 6;25(4):1968. doi: 10.3390/ijms25041968.
() infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining pharmacophore- and structure-based virtual screening, molecular dynamics simulations, and MM-GBSA calculations was employed to identify novel inhibitors for urease (U). A refined dataset of 8,271,505 small molecules from the ZINC15 database underwent pharmacokinetic and physicochemical filtering, resulting in 16% of compounds for pharmacophore-based virtual screening. Molecular docking simulations were performed in successive stages, utilizing HTVS, SP, and XP algorithms. Subsequent energetic re-scoring with MM-GBSA identified promising candidates interacting with distinct urease variants. Lys219, a residue critical for urea catalysis at the urease binding site, can manifest in two forms, neutral (LYN) or carbamylated (KCX). Notably, the evaluated molecules demonstrated different interaction and energetic patterns in both protein variants. Further evaluation through ADMET predictions highlighted compounds with favorable pharmacological profiles, leading to the identification of 15 candidates. Molecular dynamics simulations revealed comparable structural stability to the control DJM, with candidates 5, 8 and 12 (CA5, CA8, and CA12, respectively) exhibiting the lowest binding free energies. These inhibitors suggest a chelating capacity that is crucial for urease inhibition. The analysis underscores the potential of CA5, CA8, and CA12 as novel U inhibitors. Finally, we compare our candidates with the chemical space of urease inhibitors finding physicochemical similarities with potent agents such as thiourea.
()感染是全球健康面临的挑战,需要创新的治疗策略来消灭它们。脲酶是一种关键的毒力因子,它能水解尿素,使细菌在酸性胃环境中生存。在这项研究中,采用了一种多方法学方法,结合基于药效团和结构的虚拟筛选、分子动力学模拟和 MM-GBSA 计算,以鉴定新型脲酶 (U)抑制剂。从 ZINC15 数据库中筛选出 8271505 种小分子,经过药代动力学和物理化学过滤,得到 16%的化合物用于基于药效团的虚拟筛选。分子对接模拟分阶段进行,利用 HTVS、SP 和 XP 算法。随后用 MM-GBSA 进行能量再评分,确定与不同脲酶变体相互作用的有前途的候选物。Lys219 是脲酶结合部位催化尿素的关键残基,可表现为两种形式,中性 (LYN) 或碳化 (KCX)。值得注意的是,评估的分子在两种蛋白质变体中表现出不同的相互作用和能量模式。通过 ADMET 预测进行进一步评估,突出了具有良好药理特性的化合物,从而确定了 15 种候选物。分子动力学模拟显示与对照 DJM 具有相当的结构稳定性,候选物 5、8 和 12 (CA5、CA8 和 CA12) 表现出最低的结合自由能。这些抑制剂表明具有脲酶抑制作用的关键螯合能力。该分析强调了 CA5、CA8 和 CA12 作为新型 U 抑制剂的潜力。最后,我们将我们的候选物与脲酶抑制剂的化学空间进行比较,发现与噻二唑等有效试剂具有物理化学相似性。