文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

棕糖介导的碳量子点作为一种新型荧光传感器,用于庆大霉素的灵敏检测及其在食品中的应用。

The Brown Sugar Mediated Carbon Quantum Dots as a Novel Fluorescence Sensor for Sensitive Detection of Gentamicin and Its Application in Foods.

机构信息

Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou 730030, China.

出版信息

Int J Mol Sci. 2024 Feb 10;25(4):2143. doi: 10.3390/ijms25042143.


DOI:10.3390/ijms25042143
PMID:38396819
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10889699/
Abstract

In this work, a novel fluorescence sensing strategy was proposed for the detection of gentamicin based on fluorescent carbon quantum dots (CQDs) and gold nanoparticles (AuNPs). Herein, the CQDs were green-synthesized for the first time via a one-step hydrothermal method utilizing brown sugar as the precursor. In the presence of citrate-stabilized AuNPs, the fluorescence of CQDs was quenched efficiently. Gentamicin, on the other hand, had a higher affinity for AuNPs and was able to compete with CQDs for a preferential binding to AuNPs, which ultimately led to the aggregation of AuNPs and freeing of CQDs in solution, causing the fluorescence recovery of CQDs. Based on the above phenomenon, the concentrations of gentamicin could be ascertained by detecting the variations in fluorescence intensity of CQDs. This sensing strategy exhibited excellent selectivity in various antibiotics. At the same time, the method displayed outstanding sensitivity for gentamicin, which was successfully applied to real samples detection.

摘要

在这项工作中,提出了一种基于荧光碳量子点(CQDs)和金纳米粒子(AuNPs)的新的荧光传感策略来检测庆大霉素。本文首次通过一步水热法利用红糖作为前体制备了绿色 CQDs。在柠檬酸稳定的 AuNPs 的存在下,CQDs 的荧光被有效地猝灭。另一方面,庆大霉素对 AuNPs 具有更高的亲和力,并且能够与 CQDs 竞争优先结合 AuNPs,这最终导致 AuNPs 的聚集和溶液中 CQDs 的释放,导致 CQDs 的荧光恢复。基于上述现象,可以通过检测 CQDs 荧光强度的变化来确定庆大霉素的浓度。该传感策略在各种抗生素中表现出优异的选择性。同时,该方法对庆大霉素表现出优异的灵敏度,成功应用于实际样品的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/76c7f5eaf725/ijms-25-02143-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/33652a47d67c/ijms-25-02143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/17d2d994eb3b/ijms-25-02143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/ceed75eabb01/ijms-25-02143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/c2a1b047bdf5/ijms-25-02143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/bb14d2b66bee/ijms-25-02143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/8d945c5e353d/ijms-25-02143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/8dac551d71e0/ijms-25-02143-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/5f358ab33aa7/ijms-25-02143-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/bb7d8210aa62/ijms-25-02143-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/0b847dd4f672/ijms-25-02143-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/b39f36799001/ijms-25-02143-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/188ef57eadeb/ijms-25-02143-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/620b51d9735b/ijms-25-02143-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/76c7f5eaf725/ijms-25-02143-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/33652a47d67c/ijms-25-02143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/17d2d994eb3b/ijms-25-02143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/ceed75eabb01/ijms-25-02143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/c2a1b047bdf5/ijms-25-02143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/bb14d2b66bee/ijms-25-02143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/8d945c5e353d/ijms-25-02143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/8dac551d71e0/ijms-25-02143-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/5f358ab33aa7/ijms-25-02143-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/bb7d8210aa62/ijms-25-02143-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/0b847dd4f672/ijms-25-02143-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/b39f36799001/ijms-25-02143-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/188ef57eadeb/ijms-25-02143-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/620b51d9735b/ijms-25-02143-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c4b/10889699/76c7f5eaf725/ijms-25-02143-g014.jpg

相似文献

[1]
The Brown Sugar Mediated Carbon Quantum Dots as a Novel Fluorescence Sensor for Sensitive Detection of Gentamicin and Its Application in Foods.

Int J Mol Sci. 2024-2-10

[2]
Gold nanoparticles-mediated ratiometric fluorescence aptasensor for ultra-sensitive detection of Abscisic Acid.

Biosens Bioelectron. 2021-10-15

[3]
A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma.

Biosens Bioelectron. 2014-1-2

[4]
Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition.

Talanta. 2019-4-2

[5]
Sensitive and selective sensing system of metallothioneins based on carbon quantum dots and gold nanoparticles.

Anal Chim Acta. 2020-8-15

[6]
Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite.

J Colloid Interface Sci. 2022-2

[7]
A highly sensitive fluorescence nanosensor for determination of amikacin antibiotics using composites of carbon quantum dots and gold nanoparticles.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-1-15

[8]
A hybrid optical strategy based on graphene quantum dots and gold nanoparticles for selective determination of gentamicin in the milk and egg samples.

Food Chem. 2022-2-15

[9]
Green one-step synthesis of N-doped carbon quantum dots for fluorescent detection of lemon yellow in soft drinks.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-8-5

[10]
Fluorescence tuning behavior of carbon quantum dots with gold nanoparticles via novel intercalation effect of aldicarb.

Food Chem. 2021-3-15

本文引用的文献

[1]
Investigation into Red Emission and Its Applications: Solvatochromic N-Doped Red Emissive Carbon Dots with Solvent Polarity Sensing and Solid-State Fluorescent Nanocomposite Thin Films.

Molecules. 2023-2-12

[2]
Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications.

J Mater Chem B. 2015-9-21

[3]
Two-Step Hydrothermal Preparation of Carbon Dots for Calcium Ion Detection.

ACS Appl Mater Interfaces. 2019-11-12

[4]
Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine.

J Nanobiotechnology. 2019-8-26

[5]
Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection.

Nanoscale Res Lett. 2019-8-13

[6]
Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin.

J Food Sci. 2018-5-22

[7]
A photoluminescence "switch-on" nanosensor composed of nitrogen and sulphur co-doped carbon dots and gold nanoparticles for discriminative detection of glutathione.

Analyst. 2018-4-30

[8]
Red Emissive Sulfur, Nitrogen Codoped Carbon Dots and Their Application in Ion Detection and Theraonostics.

ACS Appl Mater Interfaces. 2017-5-30

[9]
Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1.

Biosens Bioelectron. 2015-11-10

[10]
Gentamicin-induced ototoxicity and nephrotoxicity vary with circadian time of treatment and entail separate mechanisms.

Chronobiol Int. 2015

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索