Suppr超能文献

从互联网搜索引擎角度审视人口情绪幸福感趋势的新视角:一种新兴的综合焦虑和抑郁指数。

A Fresh Perspective on Examining Population Emotional Well-Being Trends by Internet Search Engine: An Emerging Composite Anxiety and Depression Index.

机构信息

Center for Applied Statistics, Renmin University of China, Beijing 100872, China.

School of Statistics, Renmin University of China, Beijing 100872, China.

出版信息

Int J Environ Res Public Health. 2024 Feb 9;21(2):202. doi: 10.3390/ijerph21020202.

Abstract

Traditional assessments of anxiety and depression face challenges and difficulties when it comes to understanding trends in-group psychological characteristics. As people become more accustomed to expressing their opinions online, location-based online media and cutting-edge algorithms offer new opportunities to identify associations between group sentiment and economic- or healthcare-related variables. Our research provides a novel approach to analyzing emotional well-being trends in a population by focusing on retrieving online information. We used emotionally enriched texts on social media to build the Public Opinion Dictionary (POD). Then, combining POD with the word vector model and search trend, we developed the Composite Anxiety and Depression Index (CADI), which can reflect the mental health level of a region during a specific time period. We utilized the representative external data by CHARLS to validate the effectiveness of CADI, indicating that CADI can serve as a representative indicator of the prevalence of mental disorders. Regression and subgroup analysis are employed to further elucidate the association between public mental health (measured by CADI) with economic development and medical burden. The results of comprehensive regression analysis show that the Import-Export index (-16.272, < 0.001) and average cost of patients (4.412, < 0.001) were significantly negatively associated with the CADI, and the sub-models stratificated by GDP showed the same situation. Disposable income (-28.389, < 0.001) became significant in the subgroup with lower GDP, while the rate of unemployment (2.399, < 0.001) became significant in the higher subgroup. Our findings suggest that an unfavorable economic development or unbearable medical burden will increase the negative mental health of the public, which was consistent across both the full and subgroup models.

摘要

传统的焦虑和抑郁评估在理解群体心理特征趋势方面面临挑战和困难。随着人们越来越习惯在网上表达自己的意见,基于位置的在线媒体和前沿算法为识别群体情绪与经济或医疗保健相关变量之间的关联提供了新的机会。我们的研究通过关注检索在线信息,提供了一种分析人群情绪健康趋势的新方法。我们使用社交媒体上情感丰富的文本构建了公众意见词典 (POD)。然后,我们将 POD 与词向量模型和搜索趋势相结合,开发了综合焦虑和抑郁指数 (CADI),该指数可以反映特定时间段内一个地区的心理健康水平。我们利用 CHARLS 的代表性外部数据验证了 CADI 的有效性,表明 CADI 可以作为精神障碍流行率的代表性指标。回归和亚组分析进一步阐明了公众心理健康 (由 CADI 衡量) 与经济发展和医疗负担之间的关系。综合回归分析的结果表明,进出口指数 (-16.272, < 0.001) 和患者平均成本 (4.412, < 0.001) 与 CADI 呈显著负相关,GDP 分层的子模型也显示出相同的情况。在 GDP 较低的亚组中,可支配收入 (-28.389, < 0.001) 变得显著,而在 GDP 较高的亚组中,失业率 (2.399, < 0.001) 变得显著。我们的研究结果表明,不利的经济发展或无法承受的医疗负担将增加公众的负面心理健康,这在全模型和亚组模型中都是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9573/10888063/f91a1887248d/ijerph-21-00202-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验