文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Application of SWATH Mass Spectrometry and Machine Learning in the Diagnosis of Inflammatory Bowel Disease Based on the Stool Proteome.

作者信息

Shajari Elmira, Gagné David, Malick Mandy, Roy Patricia, Noël Jean-François, Gagnon Hugo, Brunet Marie A, Delisle Maxime, Boisvert François-Michel, Beaulieu Jean-François

机构信息

Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.

Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.

出版信息

Biomedicines. 2024 Feb 1;12(2):333. doi: 10.3390/biomedicines12020333.


DOI:10.3390/biomedicines12020333
PMID:38397935
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10886680/
Abstract

Inflammatory bowel disease (IBD) flare-ups exhibit symptoms that are similar to other diseases and conditions, making diagnosis and treatment complicated. Currently, the gold standard for diagnosing and monitoring IBD is colonoscopy and biopsy, which are invasive and uncomfortable procedures, and the fecal calprotectin test, which is not sufficiently accurate. Therefore, it is necessary to develop an alternative method. In this study, our aim was to provide proof of concept for the application of Sequential Window Acquisition of All Theoretical Mass Spectra-Mass spectrometry (SWATH-MS) and machine learning to develop a non-invasive and accurate predictive model using the stool proteome to distinguish between active IBD patients and symptomatic non-IBD patients. Proteome profiles of 123 samples were obtained and data processing procedures were optimized to select an appropriate pipeline. The differentially abundant analysis identified 48 proteins. Utilizing correlation-based feature selection (Cfs), 7 proteins were selected for proceeding steps. To identify the most appropriate predictive machine learning model, five of the most popular methods, including support vector machines (SVMs), random forests, logistic regression, naive Bayes, and k-nearest neighbors (KNN), were assessed. The generated model was validated by implementing the algorithm on 45 prospective unseen datasets; the results showed a sensitivity of 96% and a specificity of 76%, indicating its performance. In conclusion, this study illustrates the effectiveness of utilizing the stool proteome obtained through SWATH-MS in accurately diagnosing active IBD via a machine learning model.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/174081b412e9/biomedicines-12-00333-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/e3891242baf6/biomedicines-12-00333-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/22f096ce7e9b/biomedicines-12-00333-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/f164d2e90470/biomedicines-12-00333-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/4397cb2878b5/biomedicines-12-00333-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/c1d955e3ae58/biomedicines-12-00333-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/31b077725737/biomedicines-12-00333-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/174081b412e9/biomedicines-12-00333-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/e3891242baf6/biomedicines-12-00333-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/22f096ce7e9b/biomedicines-12-00333-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/f164d2e90470/biomedicines-12-00333-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/4397cb2878b5/biomedicines-12-00333-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/c1d955e3ae58/biomedicines-12-00333-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/31b077725737/biomedicines-12-00333-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10886680/174081b412e9/biomedicines-12-00333-g007.jpg

相似文献

[1]
Application of SWATH Mass Spectrometry and Machine Learning in the Diagnosis of Inflammatory Bowel Disease Based on the Stool Proteome.

Biomedicines. 2024-2-1

[2]
Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry.

J Proteome Res. 2017-2-3

[3]
Performance of Machine Learning Algorithms for Predicting Disease Activity in Inflammatory Bowel Disease.

Inflammation. 2023-8

[4]
Proteomic Discovery of Stool Protein Biomarkers for Distinguishing Pediatric Inflammatory Bowel Disease Flares.

Clin Gastroenterol Hepatol. 2020-10

[5]
A combination of fecal calprotectin and human beta-defensin 2 facilitates diagnosis and monitoring of inflammatory bowel disease.

Gut Microbes. 2021

[6]
Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease.

Anal Chim Acta. 2018-9-3

[7]
SWATH Mass Spectrometry for Proteomics of Non-Depleted Plasma.

Methods Mol Biol. 2017

[8]
Combining label-free and label-based accurate quantifications with SWATH-MS: Comparison with SRM and PRM for the evaluation of bovine muscle type effects.

Proteomics. 2021-5

[9]
Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.

Am J Gastroenterol. 2018-3-12

[10]
Differentiating between liver diseases by applying multiclass machine learning approaches to transcriptomics of liver tissue or blood-based samples.

JHEP Rep. 2022-8-18

引用本文的文献

[1]
Artificial intelligence in autoimmune diseases: a bibliometric exploration of the past two decades.

Front Immunol. 2025-4-22

本文引用的文献

[1]
A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review.

Int J Mol Sci. 2023-5-27

[2]
LFQ-Based Peptide and Protein Intensity Differential Expression Analysis.

J Proteome Res. 2023-6-2

[3]
What do we know about the renin angiotensin system and inflammatory bowel disease?

Expert Opin Ther Targets. 2022-10

[4]
Dealing with missing values in proteomics data.

Proteomics. 2022-12

[5]
Proteomics Profiling of Stool Samples from Preterm Neonates with SWATH/DIA Mass Spectrometry for Predicting Necrotizing Enterocolitis.

Int J Mol Sci. 2022-10-1

[6]
Proteomic Analysis Identifies Three Reliable Biomarkers of Intestinal Inflammation in the Stools of Patients With Inflammatory Bowel Disease.

J Crohns Colitis. 2023-1-27

[7]
Benchmarking differential expression, imputation and quantification methods for proteomics data.

Brief Bioinform. 2022-5-13

[8]
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.

Nucleic Acids Res. 2022-1-7

[9]
A guide to machine learning for biologists.

Nat Rev Mol Cell Biol. 2022-1

[10]
Diagnostics and correction of batch effects in large-scale proteomic studies: a tutorial.

Mol Syst Biol. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索