Suppr超能文献

用于将假基因和基因表征为胰腺癌患者潜在药物靶点的深度学习技术

Deep Learning Techniques to Characterize the Pseudogene and the - Gene as Drug Potential Targets in Pancreatic Cancer Patients.

作者信息

Salgado Iván, Prado Montes de Oca Ernesto, Chairez Isaac, Figueroa-Yáñez Luis, Pereira-Santana Alejandro, Rivera Chávez Andrés, Velázquez-Fernandez Jesús Bernardino, Alvarado Parra Teresa, Vallejo Adriana

机构信息

Medical Robotics and Biosignals Laboratory, Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional (IPN), Mexico City 07700, Mexico.

Regulatory SNPs Laboratory, Personalized Medicine National Laboratory (LAMPER), Guadalajara Unit, Medical and Pharmaceutical Biotechnology Department, Research Center in Technology and Design Assistance of Jalisco State (CIATEJ), National Council of Science and Technology (CONACYT), Guadalajara 44270, Jalisco, Mexico.

出版信息

Biomedicines. 2024 Feb 8;12(2):0. doi: 10.3390/biomedicines12020395.

Abstract

The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death patients. We deployed a deep learning algorithm and analyzed the gene copy number, gene expression, and protein expression data of death versus alive PaCa patients from the GDC cohort. The genes with higher relative amplification (copy number >4 times in the dead compared with the alive group) were , , , , , and . The most highly up-regulated genes (>8.5-fold change) in the death group were , , , , _, , , -, , and . None of their corresponding proteins were up or down-regulated in the death group. The mRNA of the pseudogene could act as ceRNA sponging the miRNA that was originally directed to the parental gene . We propose mRNA as the most druggable target that can be modulated with small molecules or the RNA technology approach. These markers could be added as criteria to patient stratification in future PaCa drug trials, but further validation in the target populations is encouraged.

摘要

关于为何一些胰腺癌(PaCa)患者早死而另一些患者晚死的分子学解释仍知之甚少。本研究旨在发现潜在的新型标志物和药物靶点,这些标志物和靶点可能有助于对预期早死患者进行分层并延长其预期生存期。我们运用了一种深度学习算法,并分析了来自GDC队列的死亡与存活的PaCa患者的基因拷贝数、基因表达和蛋白质表达数据。相对扩增较高的基因(与存活组相比,死亡组中拷贝数>4倍)有 、 、 、 、 、 和 。死亡组中上调最显著的基因(变化倍数>8.5倍)有 、 、 、 、_、 、 、 -、 、 和 。在死亡组中,它们相应的蛋白质均未上调或下调。 假基因的mRNA可作为竞争性内源RNA(ceRNA),充当原本靶向亲本基因 的微小RNA(miRNA)的海绵。我们提出 mRNA作为最具药物开发潜力的靶点,可通过小分子或RNA技术方法进行调控。这些标志物可作为未来PaCa药物试验中患者分层的标准,但鼓励在目标人群中进行进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cb6/11154313/2e6e601e3db6/biomedicines-12-00395-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验