Borisevich Sophia S, Aksinina Tatiana E, Ilyina Margarita G, Shender Victoria O, Anufrieva Ksenia S, Arapidi Georgij P, Antipova Nadezhda V, Anizon Fabrice, Esvan Yannick J, Giraud Francis, Tatarskiy Victor V, Moreau Pascale, Shakhparonov Mikhail I, Pavlyukov Marat S, Shtil Alexander A
Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa 450054, Russia.
Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, Moscow 115409, Russia.
Cancers (Basel). 2024 Feb 19;16(4):834. doi: 10.3390/cancers16040834.
Serine-threonine protein kinases of the DYRK and CLK families regulate a variety of vital cellular functions. In particular, these enzymes phosphorylate proteins involved in pre-mRNA splicing. Targeting splicing with pharmacological DYRK/CLK inhibitors emerged as a promising anticancer strategy. Investigation of the pyrido[3,4-]quinazoline scaffold led to the discovery of DYRK/CLK binders with differential potency against individual enzyme isoforms. Exploring the structure-activity relationship within this chemotype, we demonstrated that two structurally close compounds, pyrido[3,4-]quinazoline-2,10-diamine and 10-nitro pyrido[3,4-]quinazoline-2-amine , differentially inhibited DYRK1-4 and CLK1-3 protein kinases in vitro. Unlike compound , compound efficiently inhibited DYRK3 and CLK4 isoenzymes at nanomolar concentrations. Quantum chemical calculations, docking and molecular dynamic simulations of complexes of and with DYRK3 and CLK4 identified a dramatic difference in electron donor-acceptor properties critical for preferential interaction of with these targets. Subsequent transcriptome and proteome analyses of patient-derived glioblastoma (GBM) neurospheres treated with revealed that this compound impaired CLK4 interactions with spliceosomal proteins, thereby altering RNA splicing. Importantly, affected the genes that perform critical functions for cancer cells including DNA damage response, p53 signaling and transcription. Altogether, these results provide a mechanistic basis for the therapeutic efficacy of previously demonstrated in in vivo GBM models.
DYRK和CLK家族的丝氨酸 - 苏氨酸蛋白激酶调节多种重要的细胞功能。特别是,这些酶使参与前体mRNA剪接的蛋白质磷酸化。用药理学上的DYRK/CLK抑制剂靶向剪接成为一种有前景的抗癌策略。对吡啶并[3,4 - ]喹唑啉支架的研究导致发现了对单个酶同工型具有不同效力的DYRK/CLK结合剂。探索这种化学类型内的构效关系,我们证明了两种结构相近的化合物,吡啶并[3,4 - ]喹唑啉 - 2,10 - 二胺和10 - 硝基吡啶并[3,4 - ]喹唑啉 - 2 - 胺,在体外对DYRK1 - 4和CLK1 - 3蛋白激酶有不同程度的抑制作用。与化合物不同,化合物在纳摩尔浓度下能有效抑制DYRK3和CLK4同工酶。对化合物与DYRK3和CLK4的复合物进行量子化学计算、对接和分子动力学模拟,确定了电子供体 - 受体性质的显著差异,这对于化合物与这些靶点的优先相互作用至关重要。随后对用化合物处理的患者来源的胶质母细胞瘤(GBM)神经球进行转录组和蛋白质组分析,结果显示该化合物损害了CLK4与剪接体蛋白的相互作用,从而改变了RNA剪接。重要的是,化合物影响了对癌细胞起关键作用的基因,包括DNA损伤反应、p53信号传导和转录。总之,这些结果为先前在体内GBM模型中证明的化合物的治疗效果提供了机制基础。