文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

L. 叶提取物的化学成分、抗氧化和抗炎活性:使用分子对接工具预测 ADMET 特性和抗炎靶点。

Chemical Composition Antioxidant and Anti-Inflammatory Activities of L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools.

机构信息

Laboratory of Biotechnology, Environment and Health, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria.

Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria.

出版信息

Molecules. 2024 Feb 14;29(4):849. doi: 10.3390/molecules29040849.


DOI:10.3390/molecules29040849
PMID:38398601
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10893115/
Abstract

Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with HO, with an IC of 17.81 ± 3.67 µg.mL. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.

摘要

从天然来源衍生的化合物继续作为设计预防/治疗人类健康保健选择的化学支架。在这项研究中,我们旨在使用体外、体内和计算方法系统地揭示桃金娘甲醇提取物 (MMEx) 的化学特征、抗氧化和抗炎活性。观察到 TPC(415.85 ± 15.52 mg GAE/g)和 TFC(285.80 ± 1.64 mg QE/g)的高水平。质谱分析(GC-MS)显示存在 1,8-桉树脑(33.80%)、α-蒎烯(10.06%)、芳樟醇(4.83%)、对二甲氨基苯甲酮(4.21%)、罗汉松醇(4%)、萜品醇(3.60%)、顺式-香叶基乙酸酯(3.25%)和松脂醇(3.30%)等主要化合物。MMEx 在所有试验中均诱导出明显的剂量依赖性抑制,在 HO 中发现最佳的抗氧化活性,IC 为 17.81 ± 3.67 µg.mL。MMEx 在体内表现出良好的抗炎作用,通过限制角叉菜胶诱导的爪肿胀的发展。使用 SwissADME 网站确定活性分子的药代动力学特征,然后对包括磷脂酶 A2(PLA-2)、环氧化酶-2(COX-2)、肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和 NF-κB 在内的抗炎靶点进行虚拟筛选。药代动力学研究表明,这些分子具有良好的吸收、分布和代谢特征,且无器官毒性。在 GC-MS 分析鉴定的化合物中,Pinostrobin 查尔酮、肉桂基肉桂酸酯、荜澄茄醇、松脂醇和对二甲氨基苯甲酮被观察到具有良好的结合评分,因此具有相当大的抗炎潜力。我们的研究表明,来自阿尔及利亚桃金娘的 MMEx 可以被认为是一种有前途的候选药物,可缓解与氧化应激和炎症相关的许多健康问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/aacb04d9eb57/molecules-29-00849-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/62cccae2ba63/molecules-29-00849-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/c7214edc41ea/molecules-29-00849-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/4338ee3fc167/molecules-29-00849-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/5b6184af6fcf/molecules-29-00849-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/3cf36979b644/molecules-29-00849-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/ab4f24c87f7c/molecules-29-00849-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/f4a0fe0f7989/molecules-29-00849-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/693affafdadb/molecules-29-00849-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/12dd844c96cc/molecules-29-00849-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/2f25befe7fc9/molecules-29-00849-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/aacb04d9eb57/molecules-29-00849-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/62cccae2ba63/molecules-29-00849-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/c7214edc41ea/molecules-29-00849-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/4338ee3fc167/molecules-29-00849-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/5b6184af6fcf/molecules-29-00849-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/3cf36979b644/molecules-29-00849-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/ab4f24c87f7c/molecules-29-00849-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/f4a0fe0f7989/molecules-29-00849-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/693affafdadb/molecules-29-00849-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/12dd844c96cc/molecules-29-00849-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/2f25befe7fc9/molecules-29-00849-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f846/10893115/aacb04d9eb57/molecules-29-00849-g011.jpg

相似文献

[1]
Chemical Composition Antioxidant and Anti-Inflammatory Activities of L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools.

Molecules. 2024-2-14

[2]
Unveiling the Chemical Profiling Antioxidant and Anti-Inflammatory Activities of Algerian L. Essential Oils, and Exploring Molecular Docking to Predict the Inhibitory Compounds against Cyclooxygenase-2.

Pharmaceuticals (Basel). 2023-9-22

[3]
Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower.

Food Chem Toxicol. 2010-3-6

[4]
Phytochemical Characterization, Antioxidant and Anti-Inflammatory Effects of L. Fruits Extract against Formalin Induced Chronic Inflammation in Female Wistar Rat: Biochemical, Histological, and In Silico Studies.

Molecules. 2022-12-21

[5]
Phytochemical analysis, cytotoxic and antioxidant activities of Myrtus communis essential oil from Morocco.

J Complement Integr Med. 2019-1-19

[6]
Chemometric profiling and anti-arthritic activity of aerial parts of Glinus oppositifolius (L.) Aug. DC.

J Ethnopharmacol. 2024-6-28

[7]
Validating potent anti-inflammatory and anti-rheumatoid properties of Drynaria quercifolia rhizome methanolic extract through in vitro, in vivo, in silico and GC-MS-based profiling.

BMC Complement Med Ther. 2021-3-12

[8]
Comparison of the Scolicidal Activity of Two Leaves Extracts of Myrtus communis from Algeria Against Echinococcus granulosus Sensu Lato Protoscoleces.

Acta Parasitol. 2024-3

[9]
Myrtus communis L. infusions: the effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities.

J Food Sci. 2012-8-13

[10]
Myrtus communis L. as source of a bioactive and safe essential oil.

Food Chem Toxicol. 2015-1

引用本文的文献

[1]
High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders.

Pharmaceuticals (Basel). 2024-7-23

本文引用的文献

[1]
Relationship between inflammation and oxidative stress and its effect on multiple sclerosis.

Neurologia (Engl Ed). 2024-4

[2]
and antioxidant therapeutic evaluation of phytochemicals from different parts of Jacq.

Front Chem. 2023-11-7

[3]
Unveiling the Chemical Profiling Antioxidant and Anti-Inflammatory Activities of Algerian L. Essential Oils, and Exploring Molecular Docking to Predict the Inhibitory Compounds against Cyclooxygenase-2.

Pharmaceuticals (Basel). 2023-9-22

[4]
Antimicrobial Effects and Antioxidant Activity of L. Essential Oil in Beef Stored under Different Packaging Conditions.

Foods. 2023-9-10

[5]
Extraction Methods, Chemical Characterization, and In Vitro Biological Activities of (Mart.) Kausel Peels.

Pharmaceuticals (Basel). 2023-8-17

[6]
Anti-Inflammatory Potential of Pteropodine in Rodents.

Metabolites. 2023-8-3

[7]
Use of Saccharomyces boulardii CNCM I-745 as therapeutic strategy for prevention of nonsteroidal anti-inflammatory drug-induced intestinal injury.

Br J Pharmacol. 2023-12

[8]
Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies.

Biogerontology. 2023-10

[9]
Anti-, Antioxidant, Antidiabetic, and Anti-Alzheimer's Activities of Laurel Leaf Extract Treated by Moist Heat and Molecular Docking of Its Flavonoid Constituent, Naringenin, against Acetylcholinesterase and Butyrylcholinesterase.

Life (Basel). 2023-7-5

[10]
Ferulic, Sinapic, 3,4-Dimethoxycinnamic Acid and Indomethacin Derivatives with Antioxidant, Anti-Inflammatory and Hypolipidemic Functionality.

Antioxidants (Basel). 2023-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索